
P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

CHAPTER 1

Introduction to Mobile
Computing

Where is the life we have lost in living? Where is the knowledge we have lost in
information? Where is the wisdom we have lost in knowledge?

T. S. Elliot

1.1 INTRODUCTION

Mobile computing systems are computing systems that may be easily moved physi-
cally and whose computing capabilities may be used while they are being moved.
Examples are laptops, personal digital assistants (PDAs), and mobile phones. By
distinguishing mobile computing systems from other computing systems we can
identify the distinctions in the tasks that they are designed to perform, the way
that they are designed, and the way in which they are operated. There are many
things that a mobile computing system can do that a stationary computing system
cannot do; these added functionalities are the reason for separately characterizing
mobile computing systems.

Among the distinguishing aspects of mobile computing systems are their preva-
lent wireless network connectivity, their small size, the mobile nature of their use,
their power sources, and their functionalities that are particularly suited to the mo-
bile user. Because of these features, mobile computing applications are inherently
different than applications written for use on stationary computing systems. And,
this brings me to the central motivation behind authoring this book.

The application development and software engineering disciplines are very
young engineering disciplines compared to those such as structural, mechanical,
and electrical engineering. Software design and implementation, for the most part,

3

C
o
p
y
r
i
g
h
t
 
2
0
0
5
.
 
C
a
m
b
r
i
d
g
e
 
U
n
i
v
e
r
s
i
t
y
 
P
r
e
s
s
.

A
l
l
 
r
i
g
h
t
s
 
r
e
s
e
r
v
e
d
.
 
M
a
y
 
n
o
t
 
b
e
 
r
e
p
r
o
d
u
c
e
d
 
i
n
 
a
n
y
 
f
o
r
m
 
w
i
t
h
o
u
t
 
p
e
r
m
i
s
s
i
o
n
 
f
r
o
m
 
t
h
e
 
p
u
b
l
i
s
h
e
r
,
 
e
x
c
e
p
t
 
f
a
i
r
 
u
s
e
s
 
p
e
r
m
i
t
t
e
d
 
u
n
d
e
r
 
U
.
S
.
 
o
r
 
a
p
p
l
i
c
a
b
l
e
 
c
o
p
y
r
i
g
h
t
 
l
a
w
.

EBSCO Publishing : eBook Collection (EBSCOhost) - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE
AN: 181811 ; B'Far, Reza.; Mobile Computing Principles : Designing and Developing Mobile Applications with UML and XML
Account: ns196568.main.ebooks



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

4 INTRODUCTION TO MOBILE COMPUTING

Abacus Ele
ct

ric
ity

Fi
rs

t C
om

pu
te

rs
Net

wor
kin

g
Sat

el
lite

s
Cel

lu
la

r T
ec

hn
ol

og
ie

s

500 B.C. 1800's Mid
1900's

1960–
1970

1970–
1980

1980–
2000

FIGURE 1.1. A Timeline of Mobile Computing.

remain part art and part science. However, there are definite signs of maturation
with the development of architectures, metrics, proven tools, and other method-
ologies that give an engineering discipline its structure. Whereas there are a variety
of methodologies, techniques, frameworks, and tools that are used in developing
software for stationary systems, there are very few for mobile systems. Although
mobile computing systems have existed as long as their stationary counterparts,
most of the mature tools, methodologies, and architectures in software engineering
today address the needs of stationary systems. One of our goals in this book will
be to reflect on the research being done today to help evolve mobile application
development and to outline some of the early proven techniques and technologies
being tried in the commercial and academic environments.

In this text, we will look at those things that make the functional nature of
mobile applications different than their stationary counterparts, take a survey of
various development techniques that can be used to address these differences, and
look at various basic technologies that allow us, as software developers, to create
meaningful mobile applications in an extensible, flexible, and scalable manner.

1.1.1 A Brief History of Mobile Computing
Figure 1.1 shows a timeline of mobile computing development. One of the very
first computing machines, the abacus, which was used as far back as 500 B.C.,
was, in effect, a mobile computing system because of its small size and portability.
As technology progressed, the abacus evolved into the modern calculator. Most
calculators today are made with an entire slew of mathematical functions while
retaining their small size and portability. The abacus and calculators became im-
portant parts of technology not only because of their ability to compute but also
because of their ease of use and portability. You can calculate the proceeds of a
financial transaction anywhere as long as you had an abacus in 500 B.C. or have a
calculator today. But, calculating numbers is only one part of computing.

Other aspects of computing, namely storage and interchange of information, do
not date as far back as the abacus. Though writing has always been a way of storing
information, we can hardly call a notebook a computing storage mechanism. The
first mobile storage systems can be traced back only as far as the advent of the age
of electronics.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.1 Introduction 5

FIGURE 1.2. Wireless Communication Systems.

A mobile computing system, as with any other type of computing system, can be
connected to a network. Connectivity to the network, however, is not a prerequisite
for being a mobile computing system. Dating from the late 1960s, networking
allowed computers to talk to each other. Networking two or more computers
together requires some medium that allows the signals to be exchanged among
them. This was typically achieved through wired networks. Although wired net-
works remain the predominant method of connecting computers together, they
are somewhat cumbersome for connecting mobile computing devices. Not only
would network ports with always-available network connectivity have to be per-
vasive in a variety of physical locations, it would also not be possible to be con-
nected to the network in real time if the device were moving. Therefore, providing
connectivity through a wired system is virtually cost prohibitive. This is where
wireless communication systems come to the rescue (Figure 1.2).

By the 1960s, the military had been using various forms of wireless communi-
cations for years. Not only were wireless technologies used in a variety of voice
communication systems, but the aviation and the space program had created great
advances in wireless communication as well. First, the military developed wire-
less communication through line of sight: If there were no obstacles between
point A and point B, you could send and receive electromagnetic waves. Then

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

6 INTRODUCTION TO MOBILE COMPUTING

came techniques that allowed for wireless communication to encompass larger
areas, such as using the atmosphere as a reflective mechanism. But, there were
limitations on how far a signal could reach and there were many problems with
reliability and quality of transmission and reception.

By the 1970s, communication satellites began to be commercialized. With the
new communication satellites, the quality of service and reliability improved enor-
mously. Still, satellites are expensive to build, launch, and maintain. So the avail-
able bandwidth provided by a series of satellites was limited. In the 1980s cellular
telephony technologies became commercially viable and the 1990s were witness
to advances in cellular technologies that made wireless data communication fi-
nancially feasible in a pervasive way.

Today, there are a plethora of wireless technologies that allow reliable communi-
cation at relatively high bandwidths. Of course, bandwidth, reliability, and all other
qualitative and quantitative aspects of measuring wireless technologies are relative
to time and people’s expectations (as seems to be with everything else in life!).
Though most wireless networks today can transmit data at orders of magnitude
faster speeds than just ten years ago, they are sure to seem archaically slow soon. It
should, however, be noted that wired communication systems will almost certainly
always offer us better reliability and higher data transmission bandwidths as long
as electromagnetic communications is the primary means of data communica-
tions. The higher frequency sections of the electromagnetic spectrum are difficult
to use for wireless communications because of natural noise, difficulty of direct-
ing the signal (and therefore high losses), and many other physical limitations.
Since, by Nyquist’s principle [Lathi 1989], the bandwidth made available by any
communication system is bound by the frequencies used in carrying the signal,
we can see that lack of availability of higher frequency ranges places a limitation
on wireless communication systems that wired communication systems (such as
fiber optic–based systems) do not have to contend with.

Because the greatest advances in mobile communications originated in the mil-
itary, it is no surprise that one of the first applications of wireless communication
for mobile computing systems was in displaying terrain maps of the battlefield.
From this, the global positioning system (GPS) evolved so that soldiers could
know their locations at any given time. Portable military computers were provided
to provide calculations, graphics, and other data in the field of battle. In recent
years, wireless telephony has become the major provider of a revenue stream that
is being invested into improving the infrastructure to support higher bandwidth
data communications.

1.1.2 Is Wireless Mobile or Is Mobile Wireless?
In wireless connectivity, mobile computing devices found a great way to connect
with other devices on the network. In fact, this has been a great source of confusion
between wireless communications and mobile computing. Mobile computing devices
need not be wireless. Laptop computers, calculators, electronic watches, and many
other devices are all mobile computing devices. None of them use any sort of
wireless communication means to connect to a network. Even some hand-held
personal assistants can only be synchronized with personal computers through

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.1 Introduction 7

a docking port and do not have any means of wireless connectivity. So, before
we embark on our journey in learning about mobile computing, it should be
clear that wireless communication systems are a type of communication system. What
distinguishes a wireless communication system from others is that the communication
channel is space itself. There are a variety of physical waveguide channels such as
fiber optics or metallic wires. Wireless communication systems do not use a wave-
guide to guide along the electromagnetic signal from the sender to the receiver.
They rely on the mere fact that electromagnetic waves can travel through space if
there are no obstacles that block them. Wireless communication systems are often
used in mobile computing systems to facilitate network connectivity, but they are
not mobile computing systems.

Recently, computer networks have evolved by leaps and bounds. These net-
works have begun to fundamentally change the way we live. Today, it is difficult
to imagine computing without network connectivity. Networking and distributed
computing are two of the largest segments that are the focus of current efforts in
computing. Networks and computing devices are becoming increasingly blended
together. Most mobile computing systems today, through wired or wireless con-
nections, can connect to the network. Because of the nature of mobile computing
systems, network connectivity of mobile systems is increasingly through wire-
less communication systems rather than wired ones. And this is quickly becoming
somewhat of a nonmandatory distinguishing element between mobile and station-
ary systems. Though it is not a requirement for a mobile system to be wireless, most
mobile systems are wireless. Nevertheless, let us emphasize that wireless connec-
tivity and mobility are orthogonal in nature though they may be complementary.
For example, we can have a PDA that has no wireless network connectivity; how-
ever, most PDAs are evolving into having some sort of wireless connectivity to the
network.

Also, though it is important to understand that stationary and mobile computing
systems are inherently different, this does not mean that they do not have any
commonalities. We will build on existing software technologies and techniques
used for stationary systems where these commonalities exist or where there is a
logical extension of a stationary technique or technology that will mobilize it.

Because of the constant comparison between mobile systems and other types
of systems, we will have to have a way to refer to the “other” types of systems. We
will use the terms nonmobile and stationary interchangeably. Although mobile is
an industry-wide accepted terminology to distinguish a group of systems with the
characteristics that we have just mentioned, there is no consensus on a system that
is not a mobile system. For this reason, we will simply use the terms stationary or
nonmobile when speaking of such systems. It is also important to note the there is
probably no system that is truly not mobile because just about any system may be
moved. We will assume that cranes, trucks, or other large vehicles are not required
for moving our mobile systems! A mobile system should be movable very easily
by just one person.

There are four pieces to the mobile problem: the mobile user, the mobile de-
vice, the mobile application, and the mobile network. We will distinguish the
mobile user from the stationary user by what we will call the mobile condition:

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

8 INTRODUCTION TO MOBILE COMPUTING

the set of properties that distinguishes the mobile user from the user of a typical, sta-
tionary computing system. We will wrap the differences between typical devices,
applications, and networks with mobile devices, applications, and networks
into a set of properties that we will call the dimensions of mobility: the set of prop-
erties that distinguishes the mobile computing system from the stationary computing
system. Once we have some understanding of the mobile problem, we will look
at some established nonproprietary methodologies and tools of the software in-
dustry trade such as Unified Modeling Language (UML) as well as some commer-
cial proprietary tools such as Sun Microsystem’s Java, Microsoft’s Windows CE,
Symbian, and Qualcomm’s BREW. Once we have looked at these tools, we will set
out to solve the problem of architecting, designing, and implementing solutions
for mobile computing problems.

Let us start by looking at some of those variables that create a distinction between
mobile and stationary computing systems.

1.2 ADDED DIMENSIONS OF MOBILE COMPUTING

It should be obvious that any mobile computing system can also be stationary! If
we stop moving it, it is stationary. So, we can say that mobile computing systems
are a superset of stationary computing systems. Therefore, we need to look at those
elements that are outside of the stationary computing subset. These added dimen-
sions will help us pick out variables that in turn allow us to divide and conquer
the problems of mobile computing. The dimensions of mobility, as we will refer to
them in this text, will be the tools that allow us to qualify our problem of build-
ing mobile software applications and mobile computing systems. Although these
dimensions of mobility are not completely orthogonal with respect to each other,
they are separate enough in nature that we can distinguish them and approximate
them as orthogonal variables. Also, keep in mind that some of these dimensions
are limitations; nevertheless, they are still added dimensions that need not be con-
sidered when dealing with the typical stationary application. These dimensions of
mobility (Figure 1.3) are as follows:

1. location awareness,
2. network connectivity quality of service (QOS),
3. limited device capabilities (particularly storage and CPU),
4. limited power supply,
5. support for a wide variety of user interfaces,
6. platform proliferation, and
7. active transactions.

It is absolutely crucial that the reader understands these dimensions of mobility
and keeps them in mind throughout the process of design and implementation of
the mobile application. Too often, engineers begin with attention to design and get
bogged down in details of the tools that they use and small focused problems within
the bigger picture of the system, its design, and its architecture. The definition of
the word “mobile” reveals the first dimension we will consider: location.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 9

Multimodal and
Variant Uls

Large Variety of
Platforms

Active
Behavior

Limited
Device

Capabilities

Wireless
Connectivity

Location
Awareness

Limited
Power Supply

FIGURE 1.3. Dimensions of Mobility.

1.2.1 Location
A mobile device is not always at the same place: Its location is constantly changing.
The changing location of the mobile device and the mobile application presents the
designers of the device and software applications with great difficulties. However,
it also presents us with an opportunity of using the location and the change in
location to enhance the application. These challenges and opportunities can be
divided into two general categories: localization and location sensitivity.

Localization is the mere ability of the architecture of the mobile application to
accommodate logic that allows the selection of different business logic, level of
work flow, and interfaces based on a given set of location information commonly
referred to as locales. Localization is not exclusive to mobile applications but
takes a much more prominent role in mobile applications. Localization is often
required in stationary applications where users at different geographical locations
access a centralized system. For example, some point-of-sale (POS) systems and
e-commerce Web sites are able to take into account the different taxation rules
depending on the locale of the sale and the location of the purchase. Whereas
localization is something that stationary applications can have, location sensitivity
is something fairly exclusive to mobile applications.

Location sensitivity is the ability of the device and the software application to
first obtain location information while being used and then to take advantage of
this location information in offering features and functionality. Location sensitivity
may include more than just the absolute location of the device (if there is such
a thing as absolute location—Einstein must be rolling in his grave now!). It may
also include the location of the device relative to some starting point or a fixed
point, some history of past locations, and a variety of calculated values that may
be found from the location and the time such as speed and acceleration.

There are a variety of methods for collecting and using the location of the user
and the device. The user may simply be prompted for his or her location, but this
wouldn’t make a very user-friendly application. Imagine a system that can only
give you directions to where you want to go if you know where you are: It will be
useful often, but occasionally, you won’t know where you are or it would be too
difficult to figure out your location. The device may be reset for a relative location
if it has the ability to sense motion and can keep track of the change of location

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

10 INTRODUCTION TO MOBILE COMPUTING

Satellite 1

Satellite 3

Satellite 2

Q1

Q3

Q2

B

a1
b1

a3
b3

a2
b2

FIGURE 1.4. Determining Position Based on Triangulation.

for some period of time after this reset. Most location-sensing technologies (the
particulars of which will be discussed in Chapter 12) use one or more of three
categories of techniques: triangulation, proximity, and scene analysis [Hightower
and Borriello 2001].

Triangulation (Figure 1.4) relies on age-old geometric methods that allow cal-
culation of the location of a point that lies in the middle of three other points
whose exact locations are known. If the distance to each one of the three points
is known, we can use geometric techniques to calculate the exact location of the
unknown point. Proximity-based methods measure the relative position of the un-
known point to some known point. Scene analysis relies on image processing and
topographical techniques to calculate the location of the unknown point based on
a view of the unknown point from a known point.

The most well known location sensing system today is GPS. GPS-enabled de-
vices can obtain latitude and longitude with accuracy of about 1–5 m. GPS has its
roots in the military; until recently, the military placed restrictions on the accuracy
of GPS available for public use. Most of these restrictions have now been lifted.
GPS devices use triangulation techniques by triangulating data points from the
satellite constellation that covers the entire surface of the earth. If a device does
not have GPS capabilities but uses a cellular network for wireless connectivity,

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 11

signal strength and triangulation or other methods can be used to come up with
some approximate location information, depending on the cellular network.

Regardless of how location information is obtained, it is one of the major dif-
ferences between mobile and stationary systems. Location information can be to
mobile applications what depth can be to two-dimensional pictures; it can give us
an entirely new tool to automate tasks. An example of a stand-alone mobile soft-
ware application that uses location information could be one that keeps track of
the route that a user drives from home to work every day without the user entering
the route manually; this could then be used to tell the user which route is the fastest
way to get to work on a particular day or which route may result in the least amount
of gas consumed. An example of a wirelessly networked mobile application taking
advantage of location could be one that shows a field service worker where to go
next, once he or she is finished with a task at one site, based on the requests for
work in the queue and the location of the field service worker. It should be noted
that acquiring position information requires connectivity to some network-based
infrastructure. This infrastructure is typically isolated from the other network-
based application infrastructures. Therefore, when we say stand-alone, we mean
an application that may use some specific network-based infrastructure, such as
GPS, for obtaining location information but is not connected to any other networks
as a part of a distributed or network-based application.

Location information promises to be one of the biggest drivers of mobile appli-
cations as it allows for the introduction of new business models and fundamentally
new methods of adding productivity to business systems.

1.2.2 Quality of Service
Whether wired or wireless connectivity is used, mobility means loss of network
connectivity reliability. Moving from one physical location to another creates phys-
ical barriers that nearly guarantee some disconnected time from the network. If a
mobile application is used on a wired mobile system, the mobile system must be
disconnected between the times when it is connected to the wired docking ports
to be moved. Of course, it is always a question whether a docking port is available
when required let alone the quality and type of the available network connec-
tivity at that docking port. In the case of wireless network connectivity, physical
conditions can significantly affect the quality of service (QOS). For example, bad
weather, solar flares, and a variety of other climate-related conditions can nega-
tively affect the (QOS). This unreliability in network connectivity has given rise to
the QOS field and has led to a slew of accompanying products. QOS tools and
products are typically used to quantify and qualify the reliability, or unreliability,
of the connectivity to the network and are mostly used by network operators. Net-
work operators control the physical layer of the network and provide the facilities,
such as Internet Protocol (IP), for software application connectivity.

Usually, the QOS tools, run by the network operators, provide information such
as available bandwidth, risk of connectivity loss, and statistical measurements that
allow software applications to make smart computing decisions. The key to de-
signing and implementing mobile applications is that network connectivity and
QOS need to be taken into account with an expanded scope. Most software

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

12 INTRODUCTION TO MOBILE COMPUTING

applications, mobile or not, take advantage of networking in some way and, there-
fore, do have network connectivity features. Stationary applications typically need
not worry about the quality of network connectivity as this is handled by lower
level layers than the application: the operating system, the hardware (such as the
network card in a personal computer), the network itself, and all of the other com-
ponents that make network computing possible. Stationary software applications
typically assume some discrete modes of connectivity mostly limited to connected
or disconnected. This works for most applications because most wired network
connectivity is fairly reliable.

However, the effect of QOS in designing mobile applications is much more
profound. Whereas typical nonmobile applications need to know how to stop
operating “gracefully” when suddenly disconnected from the network, mobile
applications have to know how to continue to operate even after they are discon-
nected from the network or while they connect and disconnect from the network
intermittently and frequently. For example, let us take the case of a user who is
traveling on a train, is using an application on his PDA connected wirelessly to
some network, and is downloading a work-related report to look over when the
train passes through a tunnel and he loses network connectivity. If the application
does not have the ability to stop partway through the download process and restart
when connectivity is restored, the user may never be able to retrieve the desired
file as he passes through one tunnel after the other and the download process starts
over and over again. The application, therefore, must know how to deal with lack
of reliable connectivity.

When it comes to taking into account the QOS in most applications, certain
functionality is expected of most mobile applications. For example, almost all mo-
bile applications should know how to stop working when the application suddenly
disconnects from the network and then resume working when it connects again.
Other functionality may be desired but not required. For example, often QOS data
are measured and provided by the network operator. For example, the real-time
bandwidth available may be part of the data provided and refreshed on some time
interval. Such data can be utilized to design applications that dynamically adapt
their features and functionality to the available bandwidth.

1.2.3 Limited Device Storage and CPU
No one wants to carry around a large device, so most useful mobile devices are
small. This physical size limitation imposes boundaries on volatile storage, non-
volatile storage, and CPU on mobile devices. Though solid-state engineers are
working on putting more and more processing power and storage into smaller
and smaller physical volumes, nevertheless, as most mobile applications today are
very rudimentary, there will be more and more that we will want to do with them.
Today’s mobile applications are resource-starved. So, although the designers of
modern applications designed to run on personal computers (PCs) and servers
continue to care less and less about system resources such as memory and pro-
cessing power, it is a sure bet that memory limitations will be around for a long

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 13

time for mobile applications because when it comes to mobile systems and devices,
smaller is nearly always better.

Smaller devices are easier to carry and, consequently, may become more perva-
sive. This pervasiveness also largely depends on the price of the devices. Making
electronic devices very small normally increases the cost, as the research and
development that go into making devices smaller are very expensive. But, once
a technology matures and the manufacturing processes for making it becomes
mostly automated, prices begin to decline. At the point when the device is more
and more of a commodity, smaller also means less expensive. This is why a PDA is
much less expensive than a PC and yet it is much smaller. So, there is not a simple
proportional relationship between size of device and cost of device. Our general
rule stands that when it comes to mobile systems and devices, smaller is nearly always
better. The small size serves the mobile purpose of the device the best. And, we
all know that there are physical boundaries on the size of transistors on modern
microchips. This means that there is some ceiling for storage and processing power
of a device with a limited size bound by the heat produced by the transistors, the
number of transistors that can possibly fit into each component, and the many
other factors that the microprocessor industry has been studying since the birth
of microchips.

Limitations of storage and CPU of mobile devices put yet another constraint
on how we develop mobile applications. For example, a mobile calendaring appli-
cation may store some of its data on another node on the network (a PC, server,
etc.). The contacts stored on the device may be available at any time. However,
the contact information that exists only on the network is not available while the
device is disconnected from the network. But, because the amount of data that
can be stored on each type of device varies depending on the device type, it is not
possible to allocate this storage space statically. Also, some information may be
used more frequently than others; for example, the two weeks surrounding the
current time may be accessed more frequently in the calendar application or there
may be some contacts that are used more frequently. Mobile applications must be
designed to optimize the use of data storage and processing power of the device
in terms of the application use by the user.

In this example, the calendaring application may or may not be the only appli-
cation that uses the storage capacity of the device. So, the first step in designing
the application would be designing the appropriate functionality for discovery of
other applications on the device, the storage space that they use, and the total
storage space available, and then computing the amount of storage available to
the calendaring application. The operating system of some devices may offer the
available storage space, but this is not guaranteed. So, we need to design with the
least amount of assumptions about the hardware capabilities of the device or with
all those assumptions valid for all of the devices to be supported by the mobile
application.

Storage and processing issues are largely addressed by the various operating
systems and platforms on the mobile devices. Therefore, a large part of engineer-
ing mobile applications requires first a theoretical understanding of the various

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

14 INTRODUCTION TO MOBILE COMPUTING

types of platforms and operating systems available on mobile devices, then an
understanding of the available commercial implementations of the varieties of
types of operating systems and platforms and the type of applications best suited
for each platform–device combination. We will look at these issues closer in
Chapter 2.

This dimension of mobile application design, namely the effect of device limi-
tations, is perhaps the most well known of all dimensions in today’s mobile appli-
cation design. This was the first problem that software developers approached as
they tried to port frameworks, platforms, and methodologies of application devel-
opment of the 1980s and 1990s to mobile applications. It soon became obvious to
researchers and developers that existing paradigms and platforms did not suffice.
For now, many have simply adopted older methodologies and are building mobile
applications as pure embedded applications using assembly language native to the
device on which they want the application to run. However, we have already seen,
in the evolution of application development for PCs and servers, that develop-
ing native applications is cost prohibitive. This is the reason that most of today’s
complex applications are not written in assembly; rather, they are written in C,
C++, or a similar language and then compiled for the platform of need. Virtual
machines have given us yet another level of indirection to avoid authoring device-
and platform-specific code in languages such as Java, thereby, decreasing the cost
of application development even more.

The point is that there is typically some cost involved with layers of indirection
in software. Though these layers of abstraction and indirection can have many
benefits, we need to balance their use with the single fact that mobile devices are
limited in their CPU, memory, and other computing capabilities. And, this muddies
solutions to some design and implementation problems that would otherwise be
very clear.

1.2.4 Limited Power Supply
We have already seen that the size constraints of the devices limit their storage
capabilities and that their physical mobility affects network connectivity. For the
same set of reasons that wireless is the predominant method of network con-
nectivity for mobile devices, batteries are the primary power source for mobile
devices. Batteries are improving every day and it is tough to find environments
where suitable AC power is not available. Yet, often the user is constantly moving
and devices are consuming more and more power with processors that have more
and more transistors packed into them. For example, a user who walks in New
York City and lives in the suburbs may leave work, begin using his or her PDA,
get on the subway, and continue using it until returning home. When traveling in
Asia, Africa, and South America, users are certain to rely on their batteries more
frequently as reliable wired power sources are less pervasive than they are in North
America and Europe.

The desirability of using batteries instead of an AC power source combined with
the size constraints creates yet another constraint, namely a limited power supply.
This constraint must be balanced with the processing power, storage, and size
constraints; the battery is typically the largest single source of weight in the mobile

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 15

Buy
Airplane
Ticket

Home Airport

Check
Arrival
Time

FIGURE 1.5. An Application That Uses Both Voice and Text User Interfaces.

device [Welch 2000]. The power supply has a direct or an indirect effect on every-
thing in a mobile device. For example, the brighter the display, the more battery
power is used, so the user interface is indirectly coupled to the power supply.

Most power management functionality is built into the operating system of
the mobile device. Therefore, when it comes to device power management, the
design focus is more on making the right choice in selecting the proper platform
(device, operating system, etc.) and configuring the platform properly. In a typical
stationary application, this would suffice. But, in mobile applications, we need to
look everywhere we can to save power. Because the operating systems of mobile
devices are typically very lean and have as few functionalities as possible, many
times the application must carry some burden of awareness of the power supply.

Some platforms allow monitoring of the remaining power and other related
power information. Some platforms allow multiprocessing and multithreading,
which have an effect on the control over the variation of the CPU activity, which
in turn has an effect on the control over the power consumed by the device.
Overall, the design and implementation of the application itself is affected less
by this dimension of mobility than by any of the others mentioned in this book.
This is merely because operating systems and platforms are largely responsible
for handling the power consumption issues. However, we will discuss the effects
on choice of platform and other architectural and implementation effects that the
power supply has on mobile computing systems in a bit more detail in Chapters 15
and 16.

1.2.5 Varying User Interfaces
Stationary users use nonmobile applications while working on a PC or a similar
device. The keyboard, mouse, and monitor have proved to be fairly efficient user
interfaces for such applications. This is not at all true for mobile applications.
Examples of some alternative interfaces are voice user interfaces, smaller displays,
stylus and other pointing devices, touch-screen displays, and miniature keyboards.
Using a combination of interface types is not uncommon (see Figure 1.5).

For example, drivers who want to get some directions to their destination
may use a data-enabled cellular phone, navigate through a simple graphical user

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

16 INTRODUCTION TO MOBILE COMPUTING

interface (GUI) menu to a driving directions application, and then retrieve the de-
sired directions through a voice user interface by saying the address of the source
and destination and listening to the directions. Note that navigating to the applica-
tion may be done much more efficiently on a GUI: It may be as simple as pushing
two or three numbers that activate some choices on the screen. However, entering
text on the small display of a cellular phone and through the numeric keys of a
phone is very cumbersome. It is much easier to say the source and destination and,
subsequently, have a voice recognition system translate them, find the directions,
and read them to the user by using a text-to-speech system.

A mobile application, based on its device support, the type of users using it,
the conditions under which it is used, and many other factors discussed later in
this book offers a variety of user interfaces. Perhaps the biggest paradigm shift that
designers and implementers of mobile applications must undergo is to understand
the necessity of finding the best user interface(s) for the application, architecting
the system to accommodate the suitable user interface(s), implementing them, and
keeping in mind that a new user interface may be required at any time. Although
these user interface advances promise to be one of the main aspects of the next
computing revolution, they add much complexity and confusion to the application
design as the current application design and implementation methodologies only
take into account keyboards, monitors, pointing devices, and sometimes touch-
screens. The developer can no longer make any assumptions about the input and
output mechanisms to the system; therefore, the development process becomes
altogether different, complicating an already complex design process.

User interfaces are difficult to design and implement for the following reasons
[Meyers 1993]:

1. Designers have difficulties learning the user’s tasks.
2. The tasks and domains are complex.
3. A balance must be achieved among the many different design aspects, such as

standards, graphic design, technical writing, internationalization, performance,
multiple levels of detail, social factors, and implementation time.

4. The existing theories and guidelines are not sufficient.
5. Iterative design is difficult.
6. There are real-time requirements for handling input events.
7. It is difficult to test user interface software.
8. Today’s languages do not provide support for user interfaces.
9. Programmers report an added difficulty of modularization of user interface

software.

Meyers recognizes the problems associated with user interfaces of stationary com-
puting systems. These problems are compounded by the multichannel requirement
of mobile systems. Multichannel systems are systems that use multiple types of
user interfaces for input and output such as text, voice, and video (see Chapter 8).

Since the recognition of the complexity of designing user interfaces by Meyers
and others, some headway has been made in providing us some tools to reduce
this complexity. First, because many GUI-based applications have been developed

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 17

for stationary systems, the iterative process of design and implementation and
feedback from the users have taught us much about what works and what does
not. So, we now know more about how to design user interfaces (item 4 in the
preceding list).

But, methodologies, tools, and patterns used in the development of stationary
applications do very little to separate concerns of user interface from the rest of
the application. Sure, there are several design patterns such as the (often misused,
abused, and overused) model-view-controller (MVC), but the use of these patterns
alone does not take into account the special concerns of various types of user
interfaces. They merely make some attempt at separating some of the concerns
of the user interface from the rest of the system. They serve us well when we
are dealing with a single set of textual inputs and outputs, but today’s popular
architectural techniques and design patterns are insufficient for a large variety
of user interfaces. And this is why much of the research in the area of mobile
computing focuses precisely on this problem: How does one separate the concerns
of the user interface from the application regardless of the type of user interface?

Today, we also have proven software design and development methodologies,
such as that of object oriented programming (OOP) and use of unified modeling
language (UML), and the supporting languages and tools, that allow us to gather
the requirements of the system more clearly (item 1 in the list of difficulties), to
modularize software design (item 9), and to design software without dependence
on the language of choice (item 8). But, we have no such methodologies and tools
to take into account the multichannel requirements of mobile systems or any of
the other added dimensions of mobile application design. Though there is no con-
sensus today how to use these tools to ease the development of multichannel user
interfaces, the reader will be presented with what we see as emerging methodolo-
gies and tools that leverage existing proven methodologies and tools such as OOP
and UML.

Not only do most software applications designed today have large coupling
between the user interface and the application, but also very few are designed
to render to any desired user interface with few modifications. Most of today’s
applications need to be massively retrofitted or rewritten altogether every time a
new set of user interfaces must be supported. Of course, there is also the special
concerns of each type of user interface, such as voice user interfaces, that must be
taken into account.

We dedicate several chapters in this book to discussing various issues sur-
rounding software architecture for rendering to any type of user interface, voice
user interfaces, and the ways that users communicate with systems. For now, the
important factor is to recognize that the user interface design and implementation
process has a much bigger effect on an average mobile application than its coun-
terpart nonmobile application.

1.2.6 Platform Proliferation
Because mobile devices are small and there is much less hardware in them than in
a PC, they are typically less costly to assemble for a manufacturer. This means that
more manufacturers can compete in producing these devices. These cheaper, and

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

18 INTRODUCTION TO MOBILE COMPUTING

typically smaller, devices are often used for special purposes. The sum of these
and other similar reasons gives rise to proliferation of the types of devices in the
marketplace that an application must support.

Platform proliferation has very significant implications on the architecture, de-
sign, and development of mobile applications. Platform proliferation heightens
the importance of designing and developing devices independent of the platform.
Writing native code specific to the mobile device, unless absolutely necessary be-
cause of performance requirements, is not a recommended practice because of the
proliferation of devices. For example, it is not wise to write a voice-driven phone
book application that runs only on one type of platform. Of course, the platform
makers and manufacturers of devices and operating systems of those devices will
always try to create restrictions on the developer to prohibit writing platform-
independent applications. They may conversely give the developer features that
may only be implemented on their platform to tie the developer to that platform.
Regardless of the efforts of commercial platform builders, the software architects
and developers should be focused on their primary task of meeting the user’s
requirements. And if these requirements include support of multiple platforms,
which happens more frequently than not for mobile computing systems, platform
independence should be on the top of the architects’ and developers’ list when
choosing the tools to build an application.

We will try to address the problem of platform proliferation by using nonpro-
prietary methodologies and tools, such as UML, when possible. Throughout the
book, we will show our sample code for multiple platforms, alternating from one
to the other, so that the reader is exposed to particulars of implementation on
several of the most prevalent commercial platforms.

1.2.7 Active Transactions
Most of today’s stationary applications have a restriction that can reduce the ben-
efits of a mobile application system enormously: The user of the system must
initiate all interactions with the system. We call such systems passive systems be-
cause they are in a passive state, waiting for some external signal from the user to
tell them to start doing some particular thing. With stationary applications, this
typically works well. Most people sit down to use a computer because they intend
to perform some task. Whatever actions they may perform could signal one or
more other passive systems to perform some computing task such as retrieving
information or calculating some numbers.

At the same time, during the past two decades, messaging-based systems have
been born and have evolved. With messaging systems, any one participant of the
system can send a message to the other participant(s), and, if desired, under a
specific topic in an asynchronous manner. We will discuss both asynchronous and
messaging systems later in this chapter and other sections of this book. But, the key
idea to take away is that any one participant in the system could send a message to
another participant in the system. Later came the idea of push. In the push model
of communication, an information producer announces the availability of certain
types of information, an interested consumer subscribes to this information, and

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 19

the producer periodically publishes the information (pushes it to the consumer)
[Hauswirth and Jazayeri 1999]. There is much in common between the concepts
of messaging systems and push systems. The principle difference is that messaging
systems are asynchronous by definition. This requirement does not exist for push-
based systems.

Push systems, by definition, are active systems. For example, a particular user
could be browsing the Web and, while purchasing some goods online, be noti-
fied of the change in the price of a particular stock. In this example, the system
has taken an active role in starting communication with the user on a particular
topic.

Push–pull systems (a more complete name for push systems as the receiver of
the “pushing” is said to be “pulling” on a particular topic) can be implemented in
a number of ways, including using event-driven systems, messaging middleware,
and poll-based systems. Implementation aside, unfortunately, push systems have
mostly been a disappointing failure. One of the reasons for this failure has been
that most push pull systems have targeted users who are largely focused on the
task at hand.

If a user sits at his or her desk and begins using a PC, the user is constantly re-
minded, in an indirect manner, that he or she can access some piece of information.
Even if the user is not performing some exact task, the simple condition of sitting
down and using a keyboard and a mouse puts the user in a state where he or she
is more likely to remember information processing related tasks. Educators often
call this principle being on-task: As long as students are sitting at their desks, with
their books open, there is a much higher chance of accomplishing tasks related to
studying. Based on the same principle, the user who is sitting behind his or her
desk working on a PC is on-task and focused. For example, if the user sits down
and begins to type a memo to a coworker, the chances of the user remembering to
check, say, his or her stock portfolio has increased by the mere fact that there are
visual reminders, such as the browser icon on the desk top, that will remind the
user to perform the task. Even if the user forgets (which is unlikely, particularly
if you are sitting on thousands of shares of stock that are worth a tenth of what
they used to be after a market crash), if he or she is merely reminded by an e-mail,
the user can very easily begin the transaction that performs whatever tasks are
needed to retrieve the necessary information and perform the necessary tasks. A
reminder system certainly helps mainly because the user is focused on the task of
computing and is available to receive the reminder. (We will talk about the lack
of focus of the mobile user more in the next section.)

In this book, we will define active transactions as those transactions initiated
by the system. Active transactions may be synchronous or asynchronous. All ac-
tive transactions are initiated by the system. Synchronous transactions are time-
dependent transactions. Note that the term transaction is used in data storage
and other systems to indicate boundaries for roll-back and committing of a series
of actions that must be successfully executed, in some predetermined manner,
for the completion of the transaction. We use the term in a slightly different
manner. We use it to refer to a sequence of interactions between the user and the

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

20 INTRODUCTION TO MOBILE COMPUTING

computing system. Synchronous active transactions can be summarized by a set of
properties:

1. The transaction is initiated by the system, and during the same transaction, the
user is given an opportunity, for a finite period of time, to respond to the action
initiated by the system.

2. Synchronous active transactions require a timely response from the user.
3. The interactions between the system and the user work in a sequential and

serial manner during a synchronous transaction.
4. Synchronous active transactions are established between the system and a single

user. This may be replicated for many users, but at the most elemental level,
there is only one user in each active transaction.

Let us look at an example of a synchronous active transaction. One of the tasks
often forgotten by the field work force is logging time for tasks. For example, a
cable company repair person who forgets to log his or her hours by noon may
be called by the system at noon and asked to log these hours, through a voice
user interface. The system asks the employee to start telling it, using the key
pad or the voice, the time intervals worked and the tasks accomplished during
those hours. If the employee does not answer the call, the system logs him or
her as unavailable and may try again at a later time. If the employee does answer
the call, but does not respond to any one of the questions within some allotted
time, the system may record that the transaction has failed because of user ir-
responsiveness. If the employee answers all of the questions so that the system
can successfully log the accomplished tasks, the transaction completes success-
fully and is logged accordingly by the central system. Of course, there are many
reasons for the transaction to fail, including dropped connections, inaccurate in-
terpretation of voice commands, and others. Regardless, the idea is that the user
is called by the system and, if the user answers the phone, he or she is asked
some questions and expected to respond within some given time frame. Also, the
questions are asked in a sequential and serial manner. The system does not ask all
of the questions at once and then wait for the user to respond to them one by one.
Neither does the system ask questions while the user is answering any one of the
questions.

Most of today’s active systems are asynchronous. Asynchronous transactions
are not time-dependent. Asynchronous active transactions, like their synchronous
counterparts, can be described by a set of properties:

1. Asynchronous active transactions work just like messaging systems. They can
be established with either 1–n receivers or 1–n topics to which 1–m receivers
are subscribed.

2. Asynchronous active transactions may be a composition of 1–n messages sent
by the system and may require 1–m messages back from the users. If 1–m
messages required as responses from the users are not received within some
time frame specified by the system, the transactions may be deemed as failed.
Note that we are not defining the semantics of messaging systems (for if that

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.2 Added Dimensions of Mobile Computing 21

is what we were referring to, we would be wrong). Rather, we are defining the
semantics of asynchronous active transactions to be such that they encapsulate
a number of messages being sent from the system to the user and from the user
to the system and that some messages from the user, marked as responses to
the messages from the system, can be required for the successful completion of
the transaction.

Now, let us look at the asynchronous version of the same time-logging application
that we observed for synchronous active transactions. The system could call the
user and wait for the user to answer the phone. Once again, if the user does not
answer the phone, it logs the transaction as failed and the user’s absence as the
cause of the failure. If the user answers the phone, the system reminds the user
that he or she has not logged his or her time for the day and needs to do so. At this
point, the system asks the user to do this as soon as possible. The user can then
call the system back at some later time and log his or her hours, upon which the
transaction is considered successful. If the user never calls back to complete the
transaction, the system may continue to call the user back with periodic reminders
1–n times. Once the n limit of times is surpassed, the transaction may be considered
as failed. Once again, there are a variety of reasons for the failure of the transaction
that can be recorded by the system. However, the main thrust of the example is
that the system does not require a timely response. The system may have even
asked the user to perform several tasks at a later time and the user may have
done each one of those tasks out of order. In this example, the time dependence,
sequential order, and serial manner of the tasks of the transactions are irrelevant.
This gives the system more flexibility but we lose certainty in when and how a
response from the user is going to be received. Also, the serial order of the tasks
during the transaction may be desired or undesired.

Choosing whether the active behavior of a system is implemented using an
asynchronous active transactional model or a synchronous active transactional
model is completely dependent on the user requirements and the available tools
(which translates to the available budget).

So, we have now defined the basics of what we will need to treat active trans-
actions. Active transactions are an absolute essential part of mobile application
development mainly because of the lack of focus on the part of the user while the
user is mobile. The semantics of active transactions are defined only for the pur-
pose of this book. One may argue against these transactions in different contexts.
But, for the context of mobile application development, they will serve us well
in communicating requirements, architecture, design, and implementation. And
why are they less important to stationary applications? Because the stationary user
is typically focused on the task of computing while the mobile user is not. We will
consider the condition of the mobile user more in the next section.

Finally, it is important to note that active transactions differ from push–pull
systems and messaging systems not only because they can be both synchronous
and asynchronous but also because they can contain 1–n interactions between the
system and the user. We will discuss active transactions in much greater detail in
Chapter 13.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

22 INTRODUCTION TO MOBILE COMPUTING

We have now looked at the added dimensions that we need in our thinking
paradigm to understand mobile application development. Let us quickly look
at the root cause of the existence of these dimensions of mobility, namely the
environmental effects on the mobile user’s requirements.

1.3 CONDITION OF THE MOBILE USER

Any computing system with end users has at least two participants, the computer
and the user. We have looked at the computing system in analyzing the dimensions
of mobility, those things that make mobile applications different from stationary
applications. Now let us look at how the mobile user differs from the stationary
user. We will call this difference between the mobile user and the stationary user
the mobile condition. The elements of mobile condition distinguished here are not
necessarily comprehensive as the user studies done and the industry experience
with mobile applications are in an infancy stage. However, together, they contain
all of the major differences between mobile and stationary users.

The mobile user is fundamentally different from the stationary user in the
following ways:

1. The mobile user is moving, at least occasionally, between known or unknown
locations.

2. The mobile user is typically not focused on the computing task.
3. The mobile user frequently requires high degrees of immediacy and responsive-

ness from the system.
4. The mobile user is changing tasks frequently and/or abruptly.
5. The mobile user may require access to the system anywhere and at any time.

Note that the mobile condition is not just about the physical condition of the
mobile user but also about the mental state of the user: his or her expectations
and state of mind. Note, also, that the differentiating elements between the mobile
user and the stationary user are the root causes of the dimensions of mobility. So
the relationship between the mobile condition and the dimensions of mobility is
one of cause and effect.

Now, recall that we recognized the dimensions of mobility as the difference
between mobile and stationary applications. We have now come full circle; we
can see that the dimensions of mobility are a byproduct of the requirements of a
mobile user to use a mobile application. To complete the chain of logic for our
dimensions of mobility, let us look at the differences between the mobile user and
the stationary user that comprise the mobile condition.

1.3.1 Changing Location
It may seem trivial to state that a mobile user is always, or at least frequently, mov-
ing. But, this motion has a significant implication in that the location information
can be used to draw conclusions about the context in which the user is using
the application. This is the reason location sensitivity and QOS are dimensions of

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.3 Condition of the Mobile User 23

mobility. The location of the user at a given time is a variable. Other variables may
be the speed at which the mobile user may be traveling, what network connectivity
modes are available to the user, what the quality of that connectivity may be at any
given place and time, or how long he or she may stay connected or disconnected.
The mobile user also expects the system to have good connectivity coverage. The
mobile users will come to also expect the system to know the device’s location
with fair accuracy as location services become more commonplace. This aspect of
mobile computing presents the developers with the opportunity of giving the users
functionality not possible with stationary applications. It is a clear differentiator
that presents the mobile user with great value that cannot be obtained through
a stationary application. Therefore, building applications that take advantage of
the location information and that are localized is often a must with commercial
mobile applications.

The changing location of the mobile user also forces restrictions on power, size
of device, wireless connectivity of the device, and just about every other aspect of
the state of the mobile user. In those respects, it creates restrictions that we have
already looked at. In using the location information of the application, we have an
opportunity to provide functionality beyond that of stationary applications. The
moving nature of the mobile user is a physical aspect that gives way to a mental
state of lack of focus.

1.3.2 Lack of Focus
The primary focus of the mobile user is seldom on the computing task (although,
obviously, there are exceptions to this, but we are talking about the majority of
time when the user has a device and is mobile). This is the primary reason for
the necessity of active transactions. While a user is driving from work to home,
the task of driving takes the primary focus. During this time, if the stock price
of one of the user’s holdings begins to plummet, he or she cannot sell it before it
falls too far. The user either does not know of the plummeting price at all or is
not focused on checking on the stock price at regular intervals. Mobile users are
typically mobile because they are moving between two points with the primary
task of reaching the destination.

Another reason for lack of focus is multitasking. Mobile users often multitask.
For example, a user may be driving and talking on the phone. Another example
could be a user who is entering some data into a PDA out in the field (collecting
information on power lines as a field electrician, measuring environmental effects
as an environmental engineer, etc.) while doing the primary field work task at
the site (such as climbing a pole and paying attention to power lines, finding the
right place to measure, and keeping the environmental conditions stable while
measuring, etc.). Because of this multitasking nature of the mobile user, a variety
of user interface input types such as voice may be needed to take advantage of
the senses that are not preoccupied by another task. Also, the user interface to the
system must be very user friendly and require as few of the user’s senses focused on
communicating with the machine as efficiently as possible. For example, voice user
interfaces allow users to focus on driving while still getting whatever information
they need from the system.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

24 INTRODUCTION TO MOBILE COMPUTING

1.3.3 Immediacy
Mobile users are often in a situation where they need to quickly perform one or
more computing tasks, such as retrieving contact information, sending a voice or
e-mail message, or triggering some remote process. They don’t have the time to
go through a long boot sequence or long application setup times. Mobile users
normally have higher expectations of performance from their devices than sta-
tionary users do. Performance of mobile applications is not an afterthought as it
often is in the development of stationary applications. A short delay in application
responsiveness can decrease its usefulness enormously. For example, a user who
cannot get the necessary contact information from a mobile contact application
will eventually become frustrated and use a directory service to find the necessary
contact information in urgent situations. It is also important to note that there are
different types of immediacy. For example, the user’s tolerance, depending on the
application, will vary in first connecting to the network compared to the system
response time. The types of immediacy depend on the application.

1.3.4 Abrupt Changes in Tasks
As we mentioned before, the mobile user is typically mobile because he or she
is focused on something else other than computing. For example, many mobile
users will try to use commute time: Whether in a train, in a plane, or in an
automobile the user will be distracted by different environmental factors.† These
factors must be kept in mind in designing and implementing the flow and, once
again, the interface of the application. The mobile user needs to be able to stop
performing some computing task abruptly, do something that may be completely
unrelated, then return to the application after some unknown period of time, and,
without much effort to remember what he or she had been doing, continue the
computing task. Mobile users expect applications that flow smoothly and do not
require complex navigation despite the abrupt nature of their actions.

1.3.5 Anywhere, Anytime
The cliché of “Anywhere, Anytime,” along with all of its synonyms or similar
clichés (“Everywhere,” “Everyplace,” or “Anyplace”) and other words that refer
to this phenomenon such as “Pervasive” and “Ubiquitous” are perhaps the most
overused set of words in mobile computing. Nevertheless, this is still one of the
most important aspects of mobile computing. The mobile user expects to be able
to retrieve data and do computing at any given moment and any given time.
And this is precisely why the support for a variety of platforms with a variety of
user interfaces is critical for a mobile application: To use an application anywhere
and anytime, one may have to use it through whatever device (any device) is
available and convenient for that given place and time. Mobile users expect to
start a transaction and leave it unfinished on one device at a given place and time

† Note that not all of the mobile conditions of the user may coexist at the same time—sometimes users are
focused on the task of computing (for example, when they are in a train or a plane); other times, they are not
(for example, when a real estate sales person is selling a house and, unbeknownst to that person, another
listing comes open that may be a better fit for his or her buyer).

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.4 Architecture of Mobile Software Applications 25

and finish the same transaction later on a different device and at a different place
and time.

The mobile condition of the mobile user should be the primary guiding tool
in architecting, designing, and implementing the mobile application. The various
problems presented to us by the mobile condition may require solutions that
have inherent conflicts. For example, to increase the number of devices and user
interfaces supported, we may want to centralize the business logic and use the
devices only as thin clients. (Thin clients are discussed in detail in Chapter 16.)
However, to make the user interface as friendly as possible and to make the use
of application possible even when the device is not connected to the network, we
would want to push a significant portion of the application to the client. Obviously,
these two aspects are in direct conflict. In another example, we may see that a
particular mobile application requires increased CPU to perform a particular task
faster. But the increased CPU may mean a considerably larger device, making it
more difficult to carry. As with any other engineering problem, while designing
mobile applications, we will find that we often need to balance the solutions to
problems presented by each mobility dimension. There is no better balancing guide
than the mobile condition of the mobile user. Of course, cost in itself can offset
the benefits of any solution. Once again, as with any other engineering problem,
the solution needs to fit the problem of the customer, in our case the mobile user,
within a given budget. With an unlimited budget, nearly anything can be done.
But, of course, we all know that there is not such a thing as an unlimited budget.

Therefore the cost and the mobile condition comprise the variables that describe
our customer. Every mobile user will have a specific set of needs, but those two
are constants. In added dimensions of mobility, we have the major effects of the
mobile condition on the requirements for building mobile applications. Once we
have gathered the requirements from the user, the first step in building the mobile
application is to decide on the architecture. And this is what we will discuss next.

1.4 ARCHITECTURE OF MOBILE SOFTWARE APPLICATIONS

The first step in building a software application, after the process of gathering
requirements, is to lay down a high-level plan of what the application will be like
when it is finished. Mobile applications, like any other software application, re-
quire such a high-level plan. We call this high-level plan of the mobile application
a “mobile software architecture.” Our approach to architecture in this text will
be bottom up: we will introduce a variety of design patterns, application archi-
tectures, and processes with each addressing some specific problem with mobile
applications (Figure 1.6).

If you are not familiar with the basic prevalent application architectures in to-
day’s distributed Web applications, we recommend that you read Sections 16.1.1
and 16.1.2 of Chapter 16. You will see the terms N-Tier, client–server, mobile
agent, and peer-to-peer quite frequently throughout this text and you should
have at least a passing familiarity with them. In Chapter 16, we will define

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

26 INTRODUCTION TO MOBILE COMPUTING

Architectual Style

Dimensions of Mobility

Design
Patterns

FIGURE 1.6. Mobile Application Development Design Consideration Space.

software architecture to be a particular high-level abstraction of the system and how its
components collaborate. Then, we will summarize what we will learn in Chapters 1
through 15 to get a feeling for various architectural designs and techniques for
mobile applications. For now, let us look at what software architectures will mean
to us within the confines of mobile application development.

There are also architectural patterns; these are patterns that are recognizable
once they are used prevalently in some architectures. Although there are no fully
established design patterns, architectural patterns, or even architectures in the field
of mobile computing because of its infancy, one of our goals in this text is to outline
some techniques that show evidence of such techniques beginning to mature.
These patterns exhibit themselves in a variety of families of problems. For example,
we will introduce several different architectures for design and implementation of
multimodal user interfaces. We will also introduce some lower level design patterns
for separating the concerns of building user interfaces from our core application.

Note that the architectural decisions made in a software system are typically the
most important during the lifetime of that software system. Architecture is also as
much of an art as a skill gained through experience. It is at least partially a stylistic
aspect of software. With this said, we will try to lay out the various alternatives
made available by commercial vendors and academics. You will need to make the
appropriate decisions based on the requirements of the individual project.

1.5 OUR ROAD MAP

In this first chapter, we looked at the dimensions of mobility and the mobile
condition. These two helped us understand the fundamental differences between
designing a mobile application and a stationary application. Next, we surveyed
some high level architectures. As we mentioned, much of what architectures do for
us is to lay out a high-level plan of how the components of the system interact with

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

1.5 Our Road Map 27

each other and what the general properties of the system are. We will spend the
rest of this text discussing the components: the nitty-gritty of how to make things
work; but, we will come back to architectural issues periodically and examine how
the components fit within the architecture.

To create mobile applications, we will need some tools. Section 1 of this text will
give an introduction to those tools. In Chapter 2, we will look at some commercial
and open-source frameworks and tools that ease the development process and
show some different approaches to creating mobile applications. We will use these
frameworks and tools to show examples in the later chapters. In Chapter 3, we
will look at Extensible Markup Language (XML) and the nature of XML content.
XML is an important piece of the puzzle in distribution of content to any device.
In Chapter 4, we will look at UML, the tool we will use in modeling the design
of our applications. Though not all mobile platforms use OOP technologies, most
do. UML gives us an industry-accepted way of documenting requirements, design,
and implementation of the system.

In the second section of this text, we will look at the problems of the user
interface. Chapter 5 will show the reader how to separate concerns of particular
user interfaces, such as graphical user interfaces, from the concerns shared by
all types of user interfaces. In Chapter 6, we will see how to complement the
generic user interfaces and render graphical user interfaces for a variety of visual
text-driven devices such as PDAs and data-enabled cell phones. In Chapter 7, we
will look at VUI (voice user interface) technologies such as voice recognition,
text-to-speech technologies, voice transcription, and VoiceXML. At the end of
Section 2, we will combine what we have learned in Chapters 5–7 and, in Chapter 8,
we will see how to design user interfaces that interface with the user through
multiple media types and multiple channels. This section will show us how to
design the user interface components to fit the needs of the mobile user. It will
also show us how to fit them within the mobile architecture of the system.

In the third section, we will look at a disparate set of topics, each relating
to a dimension of mobility or an aspect of the mobile condition. We will start
with examining mobile agent and mobile code architectures more closely. These
architectures are often neglected in other texts. Because of their importance to
mobile computing, we will pay special attention to them. We will then look at
various wireless technologies as they are the prevalent means of connectivity for
mobile applications; we will also look at the effect of wireless connectivity on
architecture, protocols, and other aspects of design and implementation of a mobile
system. The disconnected user needs data at the device even when disconnected;
for this, we will need a discussion of data replication and synchronization design
and implementation issues. We will move on to two key dimensions of mobility,
location sensitivity and active transactions, how to incorporate such functionality
into the design of the system, and how to implement functionality for some of
the frameworks and tools talked about in Section 1. We will finish Section 3 by
discussing mobile security issues.

In Section 4, we will see how to put all these aspects together to make a successful
system. This section should be a great read for those project managers who want
to know what to do differently for a mobile application. And there are plenty

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: FCH/SPH P2: FCH/SPH QC: FCH/SPH T1: FCH

0521817331c01 CB752-B’Far-v3 May 4, 2005 18:26

28 INTRODUCTION TO MOBILE COMPUTING

of differences, from the requirements-gathering process to testing. In this last
section, we will also look at some typical “dos and don’ts” and a case study of
implementation of some of the concepts introduced in this text.

It is important to keep in mind that this text is not a text on “how to imple-
ment the technology de jour.” We are focused on issues of design and engineer-
ing that apply across tools. Specific implementations come and go. They evolve
based on the demands of the market, economic situation, and many other factors.
Though we will use examples from a variety of commercial and open-source spe-
cific implementations, we are focused on issues that apply to any and all specific
implementations of mobile application platforms; we are concerned with design.

Let us now get started by looking at the tools and frameworks that are available
today to create a mobile application.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

CHAPTER 2

Introduction to Mobile
Development Frameworks

and Tools

The truth of the fact is easier to bear than the truth of the fantasy.
James Hillman

2.1 INTRODUCTION

At its most primitive level, software is a set of instructions for hardware writ-
ten in machine language. At a higher level, there are assemblers and higher level
programming languages. There are frameworks, tools, and other methods of ab-
stracting various aspects of software design that help us achieve one central goal:
to handle complexity of software more reliability and faster. The biggest problem
with software design and implementation is complexity and it is this complexity
that leads into buggy systems, high cost of development, and long development
cycles, and the existence of programming languages, frameworks, and other de-
velopment tools is primarily to solve this very problem of software complexity. In
other words, as one of the most fundamental software design concepts, abstraction
reduces complexity (at least theoretically).

Today, there are many programming languages, frameworks, and tools designed
to develop server-based and desktop applications. These languages, frameworks,
and tools have matured through the years, becoming more efficient and more
reliable as they get tested in real environments by real users. Along with the
maturation of these tools has come the maturation of the process of software
design and implementation. Ideas such as OOP, design patterns, and de facto

29

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

30 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

standard software development processes have been developed and have matured
with the tools and frameworks in a symbiotic manner. So the question is whether
we can take the same methodologies, frameworks, and tools and use them to
develop mobile applications. And the answer, just as the answer to all of the other
great questions in life, is “Yes and No!”

These notions of abstraction of various concerns in designing and implementing
software have been mostly based on reducing the complexity of those systems with
the most financial benefits: business systems being used by users of PCs, main
frame systems, and other computing systems that require the user to sit in front
of a monitor and type. For example, frameworks such as class libraries to write
user interface code for Java (AWT, JFC, etc.) or C++ (MFC, Borland, etc.) are all
designed around a user interface that allows for data entry through keyboard and
mouse and displays information to the user through a monitor. Even at a more
rudimentary level, most software is written for PCs and servers without regard
to the power consumed by the system, the amount of storage available, and the
variety of user interfaces. So, it is fair to say that most of the development tools
and frameworks today are designed to facilitate writing software for stationary and
non mobile systems.

With that said, though there are many aspects of mobile software design and
implementation that are not addressed in today’s frameworks and tools, there is
much that mobile and stationary software applications share. For starters, most
commercial software, whether it is mobile or not, is intended to be run on mi-
croprocessors. Developing for mobile or nonmobile applications includes similar
processes of requirements gathering, design, implementation, and testing. But, we
repeat the question, “Can we or can we not use the same methodologies, frame-
works, and tools for mobile application development?”

The answer is more of a “Yes” as the software gets closer to the hardware and
more of a “No” as it gets farther from the hardware. The frameworks that help
us when writing software that is “closer” to the hardware such as compilers and
assemblers focus on easing the process of programming granular tasks such as
moving bits and bytes between memory locations and performing additions, sub-
tractions, and multiplications; these are all very basic operations when looking
at software applications from the bird’s-eye view. However, high-level frameworks
and tools such as user interface development tools (HTML, JFC, Visual Basic, etc.)
and other component development tools (COM/DCOM, EJB, etc.) that try to solve
high-level business logic problems do not lend themselves well to mobile appli-
cation development. The layers of abstraction in most of today’s frameworks and
tools have been done with a strong bias toward developing software for stationary
applications.

These tools do not take into account the concerns, mentioned in Chapter 1,
that make mobile software development inherently different from software de-
velopment for stationary systems. With this in mind, an entirely new market is
expanding around developing software tools and frameworks for mobile appli-
cation development. Most of what exists today is in the infancy stage; therefore,
we can expect a significant amount of organic evolution in these frameworks and
tools: The weak will die and the strong will evolve and improve. Nevertheless,

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.2 Fully Centralized Frameworks and Tools 31

we can start to see families of frameworks and tools as well as the features that
create the taxonomy of this space. In this chapter, our focus will be on the feature
sets and the taxonomy while using real tools and frameworks in the market today.
The reader should focus on the concepts of the frameworks rather than the imple-
mentations. Although some will die and others will evolve, the reasons for their
formulation, design concepts, and feature sets will remain applicable.

Frameworks and tools for mobile application development are evolving based
on the growth of architectural techniques and innovations that accommodate the
dimensions of mobility. Although the purpose of any significant tool and frame-
work used in mobile application development should be to reduce the complexity
of the mobile application, all tools, regardless of their implementations, attempt to
address the same issues. However, depending on the architectures that each may
support, their implementation and usage significantly vary. Therefore, it makes
sense to create the taxonomy of these tools based on the architectures. Let us
begin by looking at the frameworks and tools that address mobile application
development in a fully centralized architecture.

2.2 FULLY CENTRALIZED FRAMEWORKS AND TOOLS

Developing fully centralized mobile applications differs from other fully central-
ized applications by virtue of QOS, limited power supply, active transactions, and
location awareness (four of the dimensions of mobility mentioned in Chapter 1).
Fully centralized mobile applications typically have custom-designed clients to
perform specific tasks. So, the user interface on the devices used to access the
centralized system is optimized to the task being performed. The software on such
devices is typically embedded in nature and is designed to do only one thing. Also,
because of this embedded nature of fully centralized mobile systems, resources of
the device are not a concern in software development: The abilities of the client
are known beforehand. Platform proliferation, once again for the same reason, is
not a concern: Software systems in fully centralized mobile systems are all about
the software on the fully centralized host; the client devices are dumb with little or
no ability to perform dynamic computing tasks and what little software exists on
them is embedded. Therefore, three of the dimensions of mobility—namely plat-
form proliferation, limited device capabilities, and support for a variety of user
interfaces—do not apply to fully centralized applications.

Location sensitivity, in most fully centralized systems, is achieved as an integral
part of the network system or hardware-based location information on the client
device (such as GPS modules). Call centers are a prime example of what can be
a fully centralized mobile application. A cell phone user may call a call center
to access the system. The call center may approximate the location of the user
through receiving information from the cellular telephony system, from a GPS
module on the cell phone communicating with the system through the same or
different channel. (Circuit-switched phone calls carry only voice whereas packet-
switched calls can contain multiple channels of data and voice.)

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

32 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

The application at the central host as well as the embedded software on the
client must be designed with QOS issues in mind. Because all of the software on
the device is embedded, the module handling the communications piece can be
considered tightly coupled to the other modules on the client; therefore, taking
into account that QOS issues become natural.

In summary, fully centralized mobile applications are about a monolithic layer
of software from the client to the server with very little software on the client. What
software resides on the client is typically embedded, or at least highly coupled to
the device, in nature. Fully centralized mobile applications are the right solutions
for applications that require little to no flexibility in changing the requirements
of the client over the lifetime of the application and that have large development
and deployment budgets allowing for custom-designed hardware and embedded
software. Some good examples of such systems are battlefield systems used in
determining the location of a target and sending it to a centralized system, which
then relays it to another system responsible for launching a missile. Another good
example is the kind of system used in grocery stores for inventory tracking as
stock personnel track and refill the on-the-shelf inventory. In this case the mobile
devices are customized to record information about groceries and relay them to
some centralized inventory management system.

This is seldom the case in the world of commercial application development. If
mobile applications are to be pervasive, the same agile economic models that sur-
round the stationary applications on the PC and servers must succeed. Precisely for
this reason, we will not spend much time dwelling on issues surrounding embed-
ded software. For those interested, there are a variety of resources for embedded
software development. Our focus in this text will be mobile applications that can
be used on at least a small variety of devices and ones that do not require custom-
designed hardware. With this said, let us look at N-tier client–server applications
and the corresponding tools and frameworks.

2.3 N-TIER CLIENT–SERVER FRAMEWORKS AND TOOLS

As we discussed in Chapter 1, client–server architectures allow us to enable com-
munication between two applications with one application acting as the server and
the other acting as the client. For mobile applications, the server may have special
needs, but it is typically powerful enough to run a wide range of applications. For
mobile applications, there may be special logic that treats the dimensions of mo-
bility. Client applications, in the case of mobile development, are typically those
being run on mobile devices. Writing large applications for the devices to serve as
the client is typically not possible, primarily because of the limited resources on
the devices and the large variety of them. So, more often than not, mobile appli-
cations are distributed. The state of the art, as of the date of authoring this text, in
proven distributed computing systems are the N-tier client–server architectures.

One of basic problems of application development that is magnified in mo-
bile environments is code portability and mobility. The varieties of the so-called
platforms (combination of hardware and operating systems) have prompted the

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.3 N-Tier Client–Server Frameworks and Tools 33

creation of tools and frameworks such as Sun’s Java Virtual Machine and Mi-
crosoft’s Common Language Run-time. The primary goal of these tools is to give
code more portability across platforms. The problem is magnified when consider-
ing the added factors that the variety of mobile devices dwarfs the variety among
PC and server operating systems, that virtual machines tend to be large and require
lots of memory and CPU cycles, and that, once more, they are designed primarily
with the primary task of designing applications for stationary computing systems.

Here, there are two factors that are inherently opposite in nature. First, we need
a layer of software, be it a virtual machine or otherwise, that abstracts us away
from the specificity of hardware. This is the only practical way to write software
rapidly for mobile systems. But then, as software layers are added, performance is
hampered and system requirements go up. This tension between these diametri-
cally opposed factors has given rise to the creation of numerous frameworks and
tools for mobile application design. More than ever, selection of the frameworks
and tools depends on the requirements of the application.

We can address this problem in three ways:

1. Thin-Client Wireless Client–Server: We can have some homogeneous browser
specifications and implement the browsers for each device in a client–server
environment. The browser can then load markup code and render it or even
load plug-ins. This approach would be similar to the Web-model approach
where the browsers are implemented for a variety of operating systems so that
Web developers do not have to worry about the environment in which those
browsers run. As we saw in Chapter 1, this would require a persistent and stable
connection to the network and only allow for the lowest common denominator
feature set among the various platforms and devices. So, at least today, this
model is implemented by having different families of devices and platforms
with one corresponding browser for each. We will look at various techniques
for serving the right type of content to each type of browser. Such tools and
techniques focus on building a server-side structure that serves up the right type
of markup language to the browser that interprets it on the client. The Wireless
Access Protocol (WAP) and its user interface markup language of WML give
us a framework for building thin-client wireless applications with an N-tier
client–server architecture.

2. Thick-Client Wireless Client–Server: The client application on the mobile device
may be a custom application. If so, this thick client may communicate with the
server, with the client executing some tasks and the server executing the others.
Stationary client–server architectures using thick clients typically use the client
as a means of storing a small subset of the data for use of the application when
disconnected from the network and performing business logic that does not
need to be centralized. Having thick clients for mobile devices is a bit more
difficult. For one thing, as we have mentioned time and time again, mobile
devices have very restricted resources. There are those who say that Moore’s Law
will eventually eliminate any practical restrictions that affect the application
developer; however, there are other problems. There is the deployment and
provisioning problem: How do you distribute software to such a wide range of

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

34 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

devices? How do you even write software for such a large variety of platforms?
The platforms that allow thick-client development for mobile devices address
this in two ways:
a. Some provide an operating system or a virtual machine that provides the

application programmers with a platform that lessens the number of permu-
tations for writing code. J2ME (Java 2 Micro Edition) allows this through
a small virtual machine that sits on top of the hardware (or the operating
system that is run on the hardware). Microsoft requires an installation of
some flavor of Windows on the device (such as Windows CE) that allows
the application programmer to write programs for Windows. Symbian also
provides an operating system for mobile devices. Both Sun Microsystem’s
Java and Microsoft technologies, despite their differences, allow developers
to create applications on top of an operating environment. These tools are
typically products of software vendors who want to sell software and do not
want to limit themselves to a given hardware platform.

b. Hardware manufacturers, such as Qualcomm and Texas Instruments, provide
programming environments directly on top of hardware (ASIC, EEPROM,
etc.). We will look at Qualcomm’s BREW as an example of this.

Client–server architectures that rely on a thick client require a full-blown de-
velopment platform for the device. Such platforms, however, may be used in
environments other than just thick-client client-server-based systems. For ex-
ample, we can use J2ME to build stand-alone applications for small mobile
phones. Typically, many of the same programming environments that are used
for building client applications on the devices for a client–server system are
those same environments used to build applications for the devices in a peer-
to-peer or mobile agent–based system. In the case of J2ME and Symbian for
example, the development tools provided by the platforms can be used for
building applications for a variety of architectures.

3. Stand-alone Applications: Lastly, we can build stand-alone applications for the
devices using those same platforms that we mentioned for the thick-client client-
server-based systems. The only difference here is that stand-alone applications
do not really need networking components. For example, many of the first
applications for the Palm operating system were only downloadable through
the cradle that attaches the Palm to the serial port of the device. From there, you
can download an application and run it with no network connectivity. Building
stand-alone mobile applications is somewhat of a novelty as the mobile user
needs to be able to at least synchronize the application with some external
system periodically. There are few applications, such as stand-alone games, that
just need to be downloaded and executed on the device.

But, in the mobile world, the manufacturer’s of devices want to differentiate their
hardware from their competitors. One way of doing this is by allowing the devel-
opers to write programs very specific to the device platforms in platform-specific
languages such as C or C++, as in the case of BREW and BREW-like environments.

Figure 2.1 shows some of the more popular platforms at the date of authoring
this text and their ability to provide functionality based on connectivity to the

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.3 N-Tier Client–Server Frameworks and Tools 35

Connectivity

Platform

Stand-alone
Networked

Wired Wireless

WAP

Symbian

BREW

Java

.NET

M
ob

ile
 P

la
tfo

rm
s

FIGURE 2.1. Some Products in Various Categories of N-Tier Client–Server Frameworks and
Solutions.

network. Today’s popular operating systems allow applications to be written with-
out a lot of low-level programming to access hardware. They also allow multiple
applications to use the same hardware simultaneously and have standard func-
tionality such as accessing permanent storage (such as disk IO), volatile storage
(such as RAM), and interface peripherals such as the monitor and the keyboard.
But, traditional operating systems are typically large and take up considerable per-
manent storage. They also typically require quite a bit of volatile storage to get
started. For this reason, embedded software development will always be around.
Platforms such as Qualcomm’s BREW present another alternative in writing ap-
plications for the device. Developing in such environments as BREW represents
the opposite end of the spectrum to Java: The applications are written specifically
for a given hardware platform without the traditional notion of the operating sys-
tem. Such platforms as BREW allow for developing software that is optimized for
a “chip set” or specific hardware. The code is then compiled and then “burned”
onto the device. Depending on the type of hardware used, this “burning” process
can be repeated n times. Because these types of tools and frameworks are specific
to the device itself, they focus on solving the problem of writing applications for
devices. So, the problem of transporting data back and forth between the network
and these devices as well as transforming them to the proper formats used by each
type of device remains unsolved.

There is yet another family of tools and frameworks written to handle pro-
cessing of data on the server and communicating with a wide variety of devices.
Typical tasks solved by these tools include support for messaging as a means of
asynchronous communication; support for HTTP or a similar protocol as a means
of synchronous communication; and the ability to transform different types of
XML by accommodating some complex set of rules that include workflow, device-
type recognition, and multichannel rendering of content. Apache’s Cocoon project

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

36 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

and IBM’s Wireless Transcoding Publisher are examples of frameworks that try to
fulfill some of these goals.

Whereas Java offers an open and relatively mature environment to program in
the same language on any platform, Microsoft is trying to take advantage of its
large lead in the software development market to extend its technologies to include
application development tools with its .NET and Windows CE technologies. Java
allows the developer to program in Java and run the code anywhere. In contrast,
.NET promises to allow the developer to program in any language and run it on
any .NET-based environment (various Microsoft Windows family of products).
Of course, this means that any device running the applications written using the
CLR (Common Language Runtime) has to run an operating system that supports
that CLR. Such operating systems are limited to the Windows family of operating
systems. So, although Java is language bound and cross-platform, .NET is platform
bound and cross-language.

2.3.1 Mobile Operating Systems and Virtual Machines
Although Java tries to solve the proliferation problem by making the code portable
between different platforms, there are other plausible approaches. One of these
approaches is to create tools that make the applications native to one platform.
Microsoft’s .NET framework deploys such a strategy. The tools provided by the
.NET framework allow the programmer to develop the application in a variety
of languages supported by the framework. The individual applications are then
compiled to code that can be executed on the same platform. Microsoft’s creation
of the .NET platform is spurred by economic reasons, namely to keep Windows as
the dominant computer operating system. However, this does not imply that the
tools provided by the .NET framework are either superior or inferior. It is simply
a different technical approach whose merit should be judged by the implementing
developers and the users of applications that use this platform.

The principal technical difference between the .NET and Java approaches is
that .NET generalizes by operating system and Java generalizes by programming
language. So, with .NET, every device, be it a PC or any other type of computing
device, is required to run some flavor of Microsoft Windows as its operating system.

Something important to remember as we go through various tools is that de-
veloping applications for mobile devices typically involves use of an emulator
provided by the platform or device manufacturer. In this way, the unit testing and
quality control of mobile applications differs from that of stationary applications:
Everything is typically finished and tested on the emulator first and, then, tested
on the actual device.

2.3.2 Hardware-Specific Tools and Frameworks
One way to deal with device proliferation is to avoid it! Device manufacturers can
allow the application programmers to develop code that directly takes advantage
of the device features and functionality. The notion of an operating system, in such
case, is much different than what we typically think of as an operating system.
The services offered by the operating system are few and very low level. The
downside here is a tight coupling to a platform that, in turn, can translate to

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 37

heavy reliance on the manufacturer of that platform. This is the approach that
Qualcomm offers in its BREW platform. BREW is a framework designed to allow
application developers program applications for devices based on Qualcomm’s
CDMA technology. We will look at CDMA further in Chapter 9. It is a physical layer
communication protocol that offers very efficient use of the bandwidth available
in a segment of the spectrum.

In this chapter, we will address the development tools and frameworks in a
client-server context. In Chapter 9, we will look at some mobile agent tools as
well as seeing how the tools that we look at in this chapter apply to mobile-
agent architectures. We will look at the various families of frameworks and tools
that may be used to develop mobile software applications and some commercial
platforms that fall into each family. We will select the most common environment
as opposed to the most elegant environments. There are many reasons for this,
the most obvious of which is that the commercial success of products, often, does
not have a direct relationship with the elegance of the technical solution. Also, as
engineers, we often have to select popular platforms to build systems for economic
and other business reasons. Once we have selected our frameworks and tool sets,
we will use them, later on in the book, to develop sample applications.

Let us start with Java, as it is today’s most popular application development
programming environment.

2.4 JAVA

Today, it is widely accepted that Java as a programming language offers the most
portable commercial environment for writing software applications. The success
of Java has been mostly in providing standard Application Program Interfaces
(APIs), a very thoughtfully designed infrastructure for OOP that prohibits many
bad design and implementation habits such as multiple inheritance. Standard and
open APIs offer a process of evolving a language that is open to many vendors.
Furthermore, there exist implementations of the virtual machine and the native
dependencies of the APIs for most popular operating systems. There are three
major categories of Java APIs and virtual machines, namely J2ME, J2SE, and J2EE.

Java offers three distinct features as a mobile application platform:

1. Java is an object oriented programming language. As any other programming
language, it can be used to write applications.

2. Java offers complete code mobility and weak mobile agent ability. Java allows
for platform-independent programming.

3. Java is a platform.

We will assume that the reader has at least an understanding of what Java is as a
programming language and will discuss the code mobility aspects of Java further
in Chapter 9.

First, Java, as with any other programming language, is just that: a programming
language. It allows us to program a set of instructions. Perhaps just as importantly,

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

38 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Java is somewhat of a vendor-neutral language-based platform.” Java seems to have
solved the problem that has plagued many other programming languages in the
past: the lack of standardizing libraries. With C++ and many of the other program-
ming languages, one of the biggest problems has been the lack of industry-wide
standards in APIs, components, and tools. Different vendors have offered similar
components and frameworks with no uniformity among them in their APIs and
interfaces. Vendors have done this to differentiate their products; however, this
forces developers to rewrite code when moving from one component set or frame-
work to another or even to completely redo the architecture of the system. Java has
solved this problem by enforcing standard API interfaces to the components and
frameworks and allowing for vendors to compete on the basis of the implemen-
tation of the APIs. For example, Java Database Connectivity (JDBC) APIs present
the same interface to the developers regardless of what database is being used

Java, as a platform and programming language, offers mobile code. But, the
standard Java Virtual Machine was designed for desktop computers and requires
far too many resources for the typical cell phone, PDA, or mobile device. The
standard Java Virtual Machine is packaged, along with accompanying tools and
class libraries, into Java 2 Standard Edition (J2SE). A smaller version of the virtual
machine, along with a subset of classes and tools of J2SE plus a few additional
tools, forms J2ME designed for small devices.

2.4.1 J2ME
J2ME is a specification for a virtual machine and some accompanying tools for
resource-limited devices. J2ME specifically addresses those devices that have be-
tween 32 kB and 10 MB of memory. J2ME addresses the needs of two categories
of devices [Sun Micro J2ME Spec 2000]:

1. Personal, mobile, connected information devices. This portion of J2ME is called
CLDC for Connected, Limited Device Configuration. These types of devices
include cell phones, PDAs, and other small consumer devices. CLDC addresses
the needs of devices with 32 to 512 kB of memory. The virtual machine for the
CLDC is called KVM for K-Virtual Machine.

2. Shared, fixed, connected information devices. Internet-enabled appliances, mobile
computers installed in cars, and similar systems that have a total memory of
2 to 16 MB and can have a high bandwidth and continuous connection to the
network are in this group. CDC, or Connected Device Configuration, is the part
of J2ME that addresses such devices. CDC is a superset of CLDC.

Let us look at both CDC and CLDC and how we can use them to develop mobile
applications.

CLDC and MIDP
Figure 2.2 shows how J2ME components, and other parts of Java as a plat-
form, stack up. Figure 2.3 shows the breakdown of the J2ME MID Profile stack.
As we mentioned previously, CLDC is mainly intended for devices that are

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 39

FIGURE 2.2. J2ME Stack (CLDC/CDC and MIDP).

resource-starved such as mobile phones and PDAs. CLDC addresses the following
features:

1. Providing a virtual machine for providing language features. Perhaps the most
important thing to keep in mind for those who have built applications using
the Java Virtual Machine on desktops and servers is that the J2ME/CLDC Virtual
Machine is not at all like the version that comes with J2SE. To cut down on
the required resources for running it, the KVM does not provide many of the
advanced features that the J2SE Virtual Machine does. The KVM is based on
the Spotless project, which started at Sun Labs. The KVM takes up anywhere
from 40 to 80 kB depending on the device. The KVM is written in C (as are
most other Java Virtual Machines). Some features not offered on the KVM are
the following:
a. Floating point arithmetic: Floating point operations are expensive or require

the chipset on the device to have specific implementations for them. Many of

FIGURE 2.3. Layering of Functionality between CLDC and MIDP.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

40 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

the resource-starved mobile devices either do not have floating point specific
features on the chip set or do not expose them for use by applications software
running on the device.

b. Support for JNI: Java Native Interfaces (JNI) allow developers to write appli-
cations that use C/C++ programming languages along with Java in providing
Java APIs to modules or applications not written in Java.

c. Thread grouping: Advanced threading features are not offered on the KVM
and CLDC. Multithreading requires a baseline amount of resources to be
dedicated to creating, maintaining, and destroying threads. Each thread takes
up a certain amount of resources by simply existing, even if it never does
any actual work. Because the KVM is intended for resource-starved devices,
it is natural to assume that doing lots of advanced multithreading is not
something that makes much sense on such devices.

d. Full-blown exception handling: Exception and error handling seems to be one
of the first places that platform providers trim when building frameworks and
tools for limited devices. Although this makes more work for the application
developer, it allows the framework and the applications to be linear.

e. Automatic garbage collection of unused objects: Though the KVM does offer
some of the memory management features of the J2SE Virtual Machine, it
does not offer finalization of objects. This means that you have to tell the KVM
when you are done with an object. The KVM is not capable of finalizing based
on the scope of methods, etc.

f. Weak references: An object is said to be weakly referenced if it is necessary to
traverse the object that refers to it to reach it. The J2SE Virtual Machine does
not allow finalization of an object until all weak and strong references to that
object are cleared. The KVM does not provide this functionality for weakly
referenced objects. The elimination of weak references and finalization in the
KVM make programming for the KVM more like writing C and C++ applica-
tions than writing a typical J2SE application. Much of the automatic memory
management benefits of Java are in its ability to manage memory based on
weak references and to automatically finalize. These features have been elim-
inated to shrink the virtual machine. Although they allow the applications
to be faster, the static size of the applications grow as memory management
is more manual and there is a higher probability for typical C/C++ memory
management type bugs in the applications. This is not to imply that there
is no garbage collection. Indeed, there is a garbage collector in the KVM.
However, the garbage collector has to be manually notified when to discard
objects.

2. Providing a security framework for tasks such as downloading MIDlets (J2ME
CLDC/MIDP applications). Security is one of the most troublesome and compli-
cated features for providers of mobile application frameworks and tools. J2ME
builds on the experiences of Java applets in creating a security paradigm for
mobile applications. It should be noted that CLDC does not provide the full
J2SE security model, though it does provide enough low-level virtual-machine
security to guarantee that the application can not harm the device in any way.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 41

It also provides a sandbox model, though it is different than the J2SE sandbox
model.

The security sandbox of CLDC is provided by removing the ability to write
JNI code to access native functions on the device, providing a very limited set
of APIs (which we will look at next), taking away the ability to write custom
classloaders (there are no custom classloaders in CLDC), and a class file ver-
ification process that assures that the files called to be executed are Java class
files. The verification of a class file is also different from its counterpart in J2SE.
CLDC class file verification is a two-step process that offloads some of the task
of verification from the device. The CLDC verifier needs about 10 kB to execute.
But, because of the offloading of some of the verification process from run-time,
the size of the class files is slightly larger (about 5%).

3. Providing a reasonable amount of functionality for input and output. Most pro-
grams need a persistence mechanism. CLDC provides a very limited and yet
sufficient set of APIs to read and write to the nonvolatile memory provided by
devices. It should be noted that the persistence of data on the device is hardware
dependent.

4. Providing some internationalization capabilities. CLDC’s input/output (I/O) pack-
age (see the next section) provides input and output stream readers that can
handle different character encoding schemes. This allows internationalization
in two ways:
a. Dynamic: The program can determine the required character set dynamically

and use the proper character set at run time. Programmatically, this is the
more elegant option. However, it requires additional code to implement the
rules for discovery of the required character set. This approach works well
for small applications where the device resources are not taken to their limit.

b. Static: There can be multiple versions of the J2ME application ready to be
loaded onto the device. Provisioning of the application can take care of the
version of software that is distributed to the application. Though this ap-
proach is less elegant, both the amount of code downloaded by the device
and the amount of logic executed at run time can be reduced. The flexibility
of having different character sets for the same device is still available as dif-
ferent versions of the application are available for download on the network.

5. Providing a reasonable amount of networking capabilities. CLDC provides a con-
nection framework to provide basic networking capabilities. Profiles such as
MIDP build on top of this framework and can introduce more advanced net-
working capabilities.

As we saw, there are some features whose support was eliminated to shrink the
CLDC to a manageable size on the device. Some features have been intentionally
left out to be handled by “profiles” that are built on top of the CLDC. Profiles
address features that can be addressed, in the same manner, for a group of devices
but whose implementations vary because of the differences among those devices.
The best example of a feature set falling into a profile is the user interface capa-
bilities. Because various devices have different methods of entering data, different

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

42 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

screen sizes, etc., the best place for the user interface functionality is in the profile.
The areas addressed by profiles are the following:

1. download and installation of applications,
2. life-cycle management of applications,
3. user interface feature,
4. database functionality, and
5. event handling.

The Mobile Information Device Profile (MIDP) is currently the only widely known
and accepted CLDC profile. There are other profiles, such as Personal Digital Assis-
tant Profile (PDAP) designed for PDAs (typically assumed to have more memory,
processing power, and other resources than MIDs), that extend CLDC. MIDP is
designed for devices that are assumed to have the following characteristics:

1. Small displays of approximately 96 × 24 of 1:1 shaped pixels with a depth of
1 bit.

2. A minimum of 128 kB of nonvolatile memory (for storing information that is
not lost when the device is shut off and turned back on). This is mainly intended
for storing the application itself.

3. Wireless connection to the network (with all of the implications of what wireless
connectivity is at the time this text is being written: low-bandwidth, intermittent
connectivity, no standard protocol such as TCP/IP, etc.).

4. A minimum of 8 kB of nonvolatile memory for use by the application. This 8 kB
refers to information that the application should be allowed to store on the
device.

5. An ITU-T phone keypad (this is the standard alphabet mapping to the ten digits
on a phone keypad) or a QWERTY keyboard (such as those available on Palm,
RIM, or Handspring devices).

Now, let us quickly look at the Java APIs for CLDC and MIDP so that we can write
a simple application.

Overview of the CLDC and MIDP Java APIs
There is a core set of APIs that every implementer of CLDC (device manufacturers
and hardware integrators) must implement. These APIs fall within two groups:

1. J2SE-like APIs: There are three packages, namely java.lang.∗, java.io.∗, and
java.util.∗, that are inherited from the J2SE environment. It is important to
note that only a small subset of the classes available with J2SE in each package
is available for CLDC. Also, those classes available in these packages are not
identical to their J2SE counterparts in interface or implementation (though the
designers have done their best to keep the interfaces as similar as possible to
ease the task of porting).

2. CLDC-specific APIs: In the current version of CLDC (1.0.2) a small set of classes
provides I/O and networking capabilities particularly needed by small and mo-
bile devices. The package holding these classes is javax.microedition.io. The

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 43

main class that the J2ME application developers must familiarize themselves
with is the connector class. J2SE networking facilities assume the availability
of a TCP/IP connection. Obviously, this assumption is not a valid one for mo-
bile applications as a variety of communication protocols and schemes may
be used to allow the device to communicate with the network. So, CLDC de-
fines a connection framework in its Java API, providing a method for various
network providers, device manufacturers, and protocol designers to offer the
application developers options other than TCP/IP for communicating with the
network. For example, it is possible that a vendor provides WAP-style connec-
tions (WDP/UDP) that can be invoked by CLDC connection objects by passing
the right parameters to it. An example could be the following:

Connection c = Connector.open("http://www.cienecs.com");

As we mentioned previously, MIDP builds on the top of CLDC to offer the func-
tionality required to build a real application. Let us review the MIDP APIs quickly.

1. Timers: Two classes, java.util.Timer and java.util.TimerTask, allow developers
to write MIDlets that are started, one time or at some specified interval, at a
given time.

2. Networking: Whereas CLDC provides a generic connection framework that can
be built upon by the device manufacturers and network providers, MIDP pro-
vides HTTP implementation, a high-level application networking protocol, that
hides the lower layer implementation of networking between the device and
the network (TCP/IP, WAP, etc.). The javax.microedition.io.∗ package holds
the lone class of HttpConnection that allows connecting to network resources
through HTTP.

3. Storage: javax.microedition.rms.∗ (where rms stands for record management
system) provides a very simple API for storing and retrieving data. The query
capabilities provided by this package, though extremely rudimentary, are invalu-
able as they provide the basics of database-like access to nonvolatile persistence
on the device.

4. User Interface: javax.microedition.lcdui.∗ offers a set of rudimentary user in-
terface APIs to build interfaces for MIDlets. Like the storage package, the user
interface package is very simple. However, it accomplishes much by offering
an interface that is fairly generic, leaving the mapping of the interface to the
implementation to the MIDP implementers. This increases the portability by
allowing authoring of user interfaces without worrying about a great amount
of detail on the implementation of MIDP on a particular device (though it still
does not mean perfect portability).

Now, let us look at a simple J2ME/CLDC application.

Hello MIDP
CLDC applications only make sense as an application of a profile. Because the user
interface of the J2ME application is reserved for the profiles, writing a CLDC Hello

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

44 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

World application really does not make that much sense. The profile of choice for
our example, obviously, will be MIDP. Applications for MIDs (Mobile Information
Devices) are appropriately called MIDlets (like their counterparts of server-side
applications, which are called servlets, small browser-based applications called
applets, etc.).

As in applets and servlets, MIDlets are treated as components controlled by
a framework under the inversion of the control principle to which we refer to
frequently in this book. For a J2ME class to qualify as a MIDlet, it has to do the
following:

1. Extend the MIDlet class.
2. Implement the following methods:

a. startApp(): This method gets called after the class is instantiated. Think of
this like the run() method of a thread in Java.

b. pauseApp(): This method is called if the application has to be suspended for
some reason. Suspension of the application can be required for power saving,
an incoming phone call, or a series of other reasons.

c. destroyApp(boolean b): This is used to do any maintenance necessary before
the application is discarded. This method is necessary mainly because final-
ization and weak references are not available in J2ME. (It can be used for
release of other resources as well depending on the type of the application.)

Figure 2.4 shows a simple MIDP application that simply shows a message on the
screen and allows the user to exit the application.

A variety of vendors, such as Borland and Sun, offer J2ME development tools.
Sun Microsystems has a free tool kit that offers the following components for
development of J2ME applications:

1. KToolbar: This is the overtool that provides a GUI to manage collecting the
classes that are put into the MIDlet, any name-value property sets that are used
by the classes, and any resources such as icons used by the MIDlet. It also
provides GUI control over build and bundling of the MIDlet into a deliverable
package to the device.

2. Preverifier: As we mentioned previously, preverification of classes allows J2ME
to offload some work from the device.

3. Compiler: The J2ME compiler compiles the classes. Remember that J2ME classes
need to be preverified before they are ready to be used.

4. Emulators: There is a series of emulators that ship with any development kit.
Mobile device and mobile software vendors provide other emulators for J2ME.

5. Emulation of Performance: The Preferences tool allows the developers to adjust
for the virtual machine proficiency, network performance, storage monitoring,
and network traffic monitoring. These features have only been available in the
latest version of the tool kit. Though they may seem secondary, they actually
provide a huge leap over the previous versions of the tool as, for the first time,
some of the dimensions of mobility are treated within the tool kit. These are
namely limited devices resources and QOS.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 45

import javax.microedition.midlet.∗;
import javax.midroedition.lcdui.∗;

public class HelloMIDP extends MIDlet implements

CommandListenter {

public static final String HELLO = "Hello MIDP";

private Display mDisplay;

private Command mExit;

public HelloMIDP() {
mDisplay = Display.getDisplay(this);

mExit = new Command("Exit", Command.SCREEN, 1);

}

public void startApp() {
TextBox myMessage = new TextBox(HELLO, HELLO, 256, 0);

myMessage.addCommand(mExit);

myMessage.addCommand((CommandListener) this);

mDisplay.setCurrent(mDisplay);

}

public void pauseApp() {
//Our application is very simple and does not really

//require any manual finalization or other actions if

//the application is suspended. The implementation of

//this method is not trivial for more complicated

//applications.

}

public void commandAction(Command aCommand, Displayable

aDisplayHandle) {
if (aCommand == mExit) {

destroyApp(false);

}
}

public void destroyApp(boolean b) {
notifyDestroyed();

}
}

}

FIGURE 2.4. Hello MIDP.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

46 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

Though the Java community is working on it, unfortunately, J2ME still does not
treat multimodal user interfaces and location sensitivity at all. These are two di-
mensions of mobility that have gone nearly completely neglected in J2ME.

Using the KToolbar to generate an application is fairly intuitive once you have
your source code in. Tools such as Borland’s JBuilder and Websphere Anywhere
Suite offer editors specially customized for J2ME code. Once the code is com-
piled, you will run a ∗.jad file in one of the emulators. The ∗.jad files encapsulate
information about MIDlets.

To deploy a J2ME application, everything is bundled into a JAR file. A JAR
file can have one or more MIDlets (classes that inherit from the MIDlet class
and implement the appropriate methods). The JAR manifest file (a text file that
specifies the classes that are in the JAR file along with some attributes for those
classes) is used by the MIDP environment (implemented by the J2ME device) to
recognize and install the applications. There are a set of required attributes in the
manifest file needed for the environment to run an application. The J2ME tool
kit provides a GUI to create the attributes. Although the JAR manifest contains
a set of attributes for all of the MIDlets in the JAR, there is a JAD file for every
MIDlet. The JAD file acts as an application descriptor. The JAD file must have the
name, version, vendor, JAR URL, and JAR size of a MIDlet. It may contain other
information such as a description and an icon.

Treatment of Dimensions of Mobility by CLDC and Profiles
Because of the way profiles are layered on the top of CLDC, dimensions of mobility
are treated in a peculiar way. Let us look at the dimensions individually.

1. Location Awareness: To date, there is no treatment of location awareness in
J2ME. However, this is being treated. JSR 179, Location API for J2ME is defin-
ing an optional package to build on top of CLDC version 1.1 and higher. This
JSR is intended to work with various positioning methodologies such as GPS
or cell-based triangulation; however, it is explicitly intended to hide the im-
plementation, and complexities thereof, of the positioning system. Therefore,
the API will be agnostic to the method of finding the location. Currently, the
package name is proposed to be javax.microedition.location.

2. Network QOS: During the development, as we mentioned earlier, various de-
velopment tools offer emulation of QOS conditions for wireless devices. J2ME’s
connection framework addresses this issue, in an extremely elegant manner, af-
ter deployment of the application on the device. Because the connection frame-
work is able to create any type of connection, network providers and device
vendors can provide their own APIs on the device. The connection framework
also provides the flexibility to use datagrams of various protocols such as WAP.
Obviously, standard connections of TCP/IP and HTTP are available as well.

3. Limited Device Capabilities: KVM takes away large chunks of functionality, which
is helpful but not necessary, for development of applications to shrink the size of
the virtual machine. This was obviously done with limited device capabilities
in mind. The tools provided with the J2ME tool kit also provide settings to
emulate the behavior of the limited device such as a setting that allows one

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 47

to account for the performance of the virtual machine (KVM) on the various
devices.

4. Limited Power Supply Management: This is one of the areas left virtually un-
treated by J2ME. But, this lack of treatment seems to be common throughout
the application development platforms. Next-generation mobile platforms and
tools will include intuitive techniques to take into account the power supply
levels, at run time, to optimize the use and performance of the application.

5. Support for a Large Variety of User Interfaces: Though J2ME takes into account
the variations in simple graphical user interfaces in CLDC/MIDP, there are no
parts of that to treat multichannel user interfaces (e.g., mixtures of audio, video,
text, etc. for input and output to the system). This lack of treatment of voice
and other nontextual channels exists in both development and deployment
environments.

6. Platform Proliferation: By allowing one to select from a different sets of emula-
tors, J2ME provides fair support, at least in CLDC/MIDP stack, for developing
applications for various devices. In its architectural design, by breaking down
various devices into families of devices supported by CDC, CLDC, etc. and
creation of layers such as MIDP, J2ME is perhaps the most well designed appli-
cation development framework in treating platform proliferation. Furthermore,
though we do not address various embedded Java technologies outside of J2ME
in any considerable depth, Java, as a platform, offers the most comprehensive
treatment of the variation of hosts for software applications.

7. Active Transactions: Because CLDC/MIDP applications are components run by
a virtual machine and within a tightly controlled sandbox, writing an active
application is a difficult task. The components do not control their own life
cycles (they are controlled by a state machine that calls predefined methods
depending on the events that are sent to it), thereby making J2ME applications
inherently passive. It is possible to achieve a limited amount of active behavior
by polling. Supporting active transactions (sometimes referred to as push if it is
between two different hosts on a network) is something that the Java community
is actively discussing.

Overall, J2ME offers a very good treatment of dimensions of mobility. Although
some aspects are currently neglected, the Java community is continually working
on treating them. Though it may take a long time, it is comforting to know that
they will eventually treat each dimension and that the treatment will be vendor
neutral, creating an environment of competition where new products will flourish
and the better products will survive.

XML and J2ME
XML is the document format of choice when it comes to ubiquitous applications;
we will look at this and related XML issues in detail in the next chapter. How-
ever XML is not only text, but it also requires considerable horse power to
parse it. Although XML-based technologies such as XML-based Web services are
ideal for providing ubiquitous content for mobile devices, they are tremendously

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

48 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

troublesome for a resource-starved platform that has to save every bit of memory
and every cycle of CPU.

As you have noticed in our discussion of CLDC and the profiles that accompany
it, there is currently no special treatment of XML (though such are being discussed
at the time of writing this text in the Java community). There are three types of
parsers [Knudsen 2002]:

1. Model Parsers: These parsers go through the entire XML document and create
some representation of the document in a programmatic model. DOM (Docu-
ment Object Model) parsers are model parsers. Model parsers use considerable
memory and processing power because, regardless of what you need out of the
XML document, the entire document is parsed and represented in some other
format in memory.

2. Push Parsers: These parsers emit events as they parse through the document.
Once again, they go through the entire document; however, the advantage they
offer over the model parsers is that they do not keep a representation of the
document in memory.

3. Pull Parsers: Pull parsers do not go through the entire document. Rather, they
leave the control on how much of the document is parsed to the client.

Selecting the parser is somewhat of a balancing act that often requires some knowl-
edge of the average and maximum size of documents. The application always
knows what information it needs from the document. Putting together what needs
to be extracted from the document, the typical size of the document, and the size
of the application depending on the parser used tells us what the best fit for our
need is. For example, whereas pull parsers are typically larger in size (kXML is
a pull parser for CLDC/MIDP), they have a simple interface allowing for a small
application to do all the necessary work without taking up a lot of memory to store
the entire document. This works well for scenarios involving larger documents
and straightforward data extraction from XML. However, if the documents are
going to be small, the cost of storing them in memory is less, so a smaller model
or push parser does the job effectively.

We will have some samples later in this text that parse XML on the device with
J2ME.

Using UML to Model J2ME Applications
As we mentioned in Chapter 1, one of our objectives in this text is to tie the entire
development cycle into UML and use it as a tool to facilitate the development
process. Java and UML have been married during their evolution. As part of the
Java platform, it is natural that we think about modeling J2ME applications with
UML.

There are two aspects to modeling J2ME applications with UML. First, J2ME
applications have a great deal in common with all other Java applications: They are
written in Java, which is an object-oriented language. UML is designed to model
object-oriented languages. Second, there are features of desktop and server-side

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 49

virtual machines (e.g., J2SE Virtual Machine) that are not available in J2ME, such
as finalization and weak references. The elimination of these features forces the
developer to take care of some tasks manually. Most Java developers are not used
to managing memory semimanually or worrying about weak references; therefore,
UML gives us a great visual tool to track down weak references, make sure objects
are finalized in a proper way, etc.

Let us enumerate the various uses of UML in a J2ME application:

1. Class Diagrams: As with any other Java application, we can model the classes
and the relationships among them with UML class diagrams. The class diagrams
present us with an invaluable tool to see where weak references may be. To do
this, however, we need to be very explicit in specifying association types and
life-cycle controls within our UML diagrams. When it comes to modeling J2ME
classes with UML class diagrams, the more detail, the better. J2ME applications
are typically not very large (remember the resource restrictions), so a significant
amount of detail added to the class diagram does not create an unmanageable
situation.

2. State Diagrams: State diagrams can be used in representing the life cycles of the
various objects. With J2ME, having numerous state diagrams can be invaluable
in giving developers a visual tool to analyze the life cycle of various objects that
may need to be finalized and to reveal bugs that are caused by the lack of support
for weak references. State diagrams can also be used to represent the effect of
various events. Because CLDC applications, and most other J2ME applications,
are components used in an environment of inversion of control, the driver
component (for example the MIDlet) implements a particular set of methods
and/or inherits from some class with some default behavior. State diagrams can
help in clarifying the behavior of the components as various events, driven by
the user interface or otherwise, change the state of objects.

3. Component Diagrams: Though most J2ME applications are fairly small, compo-
nent diagrams can come in handy too. One of the techniques used in creating
multifunction J2ME applications is to divide them into smaller applications,
each represented by a component in a component diagram, and to make the
user interface hide the disparateness of the small applications, disguising them
as one large application.

4. Sequence Diagrams: As we will see in later chapters, these diagrams can be
extremely useful in representing user interfaces. The profile layer (MIDP) en-
capsulates the user interface implementation, and the MIDP APIs are designed
in such a way that user interface actions are specified generically and the spe-
cific functionality is delegated to the MIDP implementation. Because of these
features, sequence diagrams help in documenting the exact various interac-
tions on various implementations on MIDP on devices that are all CLDC/MIDP
compliant but vary slightly in specifics such as the number of buttons on the
keypad, extra buttons, the number of lines on the screen, etc.

We will discuss using UML for various parts of the development process of mobile
applications throughout this text. Keep in mind that UML is a general tool and

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

50 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

its use can be subjective when applied to specific things like various APIs and
platforms.

2.4.2 CDC
We have looked at CLDC, one of the two parts of J2ME intended for devices
(Java Card and other embedded technologies being somewhat tangent to our
discussions). The other part of J2ME is CDC, which is targeted at environments,
where more than 512 kB (usually about 2 MB) of memory is available for the Java
environment and the application [Laukkanen 2002]. Whereas CLDC can have a
variety of profiles built on top of it, CDC profiles are built on top of the so-called
Foundation Profile. Like CLDC’s KVM, the CDC has its own virtual machine, the
CVM (C Virtual Machine).

Unlike the KVM, the CVM supports all of the features that the J2SE Virtual
Machine does. The CDC is smaller than J2SE by the virtue of its lack of many of
the class libraries that are shipped with J2SE. The CVM also offers some changes
to improve performance on resource-starved devices. These include lower mem-
ory usage (about 60% less than the J2SE virtual machine), an extensible CVM
architecture (to add functionality), and a design that accommodates real-time op-
erating systems (RTOSs). Because the CVM has been implemented mostly in C,
it can be ported to, and between, real-time operating systems easily. (The more
assembly-level code exists in the implementation of a software application, the
more difficult it becomes to port to, and between, RTOSs because assembly code
is specific to platforms—hardware and operating system combinations).

The most significant classes eliminated from the CDC/Foundation Profile are the
GUI classes. To date, CDC implementations exist for several handheld operating
systems, including Windows CE, Linux, and Symbian.

In his paper [Laukkanen 2002] Laukkanen looks at the performance aspects of
CDC versus J2SE under a variety of conditions. For those planning on implement-
ing CDC applications, this paper is a must read. Laukkanen’s testing results show
that although CDC performs nearly as advertised with smaller applications (fewer
objects, threads, etc.), as the application gets larger, it begins to underperform.
Keep in mind, though, that in a resource-starved mobile device, we should not
have large applications anyway. Although CDC minimizes the use of memory
resources, as Laukkanen puts it, “the fact is that without Foundation Profile, the
CDC is quite useless.” This is because the architecture of CDC simply modularizes
the functionality of J2SE into multiple profiles, allowing the vendors and applica-
tion developers to only use the part of the Java platform that they need while still
having the full functionality of a full-blown Java Virtual Machine in CVM.

We will not be using CDC-based examples in this text. Although CDC increases
in its relevancy to mobile application development because of the increasing re-
sources on the mobile devices, the programming paradigm of CDC is not much
different than that of J2SE. So, writing CDC-based J2ME applications is much the
same as writing any J2SE application. Also, there is no special treatment of di-
mensions of mobility in CDC as, to date, it is mostly used for network appliances
(e.g., TVs) that are always connected and fairly stationary (though this does not

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 51

Power Supply

Reset

Magnetic Strip

Contacts

(Back of Card)

Check

Optional
Contact

Optional
Contact

Optional Contact

Input/Output

Front of Card

Embossing Area

Ground

FIGURE 2.5. Java Card.

mean that CDC has any limitations that prohibit it from being used for mobile
applications).

2.4.3 Java Card
Smart cards have been around for a long time. A smart card is a card that has an
embedded processor or some type of electronic memory device able to store data,
interface with some known set of devices, and allow the stored data to be retrieved.
Most smart card technology, prior to Java Card, has been based on proprietary
technologies. So, interoperability between different cards and card readers/writers
has only been possible if the manufacturer of the card or the reader/writer offers
an open API and the counterpart implements that open API. Obviously, with every
manufacturer having its own API, managing smart cards and their readers/writers
has been one of the most technically challenging tasks in creating smart cards. It
has also created economic scaling problems in using smart cards across different
businesses, locations, languages, etc.

The Java Card (Figure 2.5) specification is designed to solve these two problems.
The Java Card API provides an API that, when abided by, allows for interoperability
between different card readers/writers and cards regardless of the manufacturer and
Java Card API implementer.

Today, there are three types of smart cards [Ruuskanen 2000]:

1. IC (Integrated Circuit) Memory Cards: This is the most common type of smart
card. These types of cards hold a small amount of data (less than 4 kB) and
have no processing power. These cards are used as debit cards, security cards,
and others.

2. IC Microprocessor Cards: These cards typically have 16 kB or less of read-only
memory and half of kilobyte of random-access memory. Java Card falls into this
family. These types of cards provide a very small amount of processing power

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

52 INTRODUCTION TO MOBILE DEVELOPMENT FRAMEWORKS

that can be used for things like encryption and decryption of the user profile
information on the card.

3. Optical Memory Cards: These cards provide the largest amount of storage of all
smart cards. Though they do not provide any processing power, they can be
very useful since they hold up to 4 MB of data.

As in the case of CDC and CLDC, the Java Card has its own virtual machine,
the Java Card Virtual Machine (JCVM). But, the Java Card Virtual Machine is
fundamentally different from the other virtual machines we have discussed. The
JCVM never stops! The JCVM’s state is permanently persisted into the electroni-
cally erasable PROM (EEPROM) when the card is removed from the reader. It is
restored when it is inserted back into the reader.

Smart card technologies such as the Java Card offer a very unique and innovative
approach to problems solved by mobile applications. Smart cards are one of the
smallest devices in the range of mobile devices. Though they do not offer much in
the way of input/output or processing power, they introduce a different paradigm
of mobile computing where the user depends on card readers to exist everywhere
he or she goes. Though this paradigm is not as flexible as a device that is available
to the user all of the time, smart cards are smaller and less intrusive. The smart card
of the future may even offer things such as a small display for receiving messages
and wireless access to the network.

We will not discuss the Java Card much during the remainder of this text. Smart
card technologies promise to be a sizable part of the solution set to the mobile
computing problem; however, the applications for smart cards are very small,
passive, and typically not applicable to anything that is represented by UML.

Now, let us look at another key Java technology that can help us in tying the
network of mobile devices together.

2.4.4 JINI
The Java Naming and Directory Interface (JNDI) allows various resources to be
identified in a generic manner on the server side; however, it is far too heavy for
implementation on mobile devices. But, we already know that one of the neces-
sary pieces of functionality to write mobile applications is discovery of devices and
services. In Chapter 3 and the remainder of the book, we will look at platform-
independent discovery mechanisms such as RDF, CC/PP, and UAProf. Java, how-
ever, gives us Java Intelligence Network Infrastructure (JINI), a base technology for
ad-hoc networking. JINI provides lookup services and its own discovery protocol.
Let us go through the basic transactions that JINI provides:

1. Lookup: This is a JINI service that maps interfaces indicating the functionality
offered by a service to sets of objects that implement the service [Hashman and
Knudsen 2001]. Lookup functionality of JINI provides the basic foundation for
a federated service in which a variety of services cooperate and various processes
can offer each other various services.

2. Discovery: Before a given process begins using a service found by the lookup
process, it must find that service. The act of finding lookup services is called

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use



P1: IYP/JZZ

0521817331c02 CB752-B’Far-v3 May 4, 2005 22:2

2.4 Java 53

discovery. This is typically done by the underlying infrastructure that offers the
JINI implementation.

3. Events: The various JINI participants can register to listen to the various events
emitted by the other JINI participants. Any so called JINI device (anything that
can become a participant in a JINI network) can register events with any other
JINI device. In this way, the architectural communication model is more like
peer-to-peer than it is client–server.

4. Leasing: JINI devices share resources through a process called leasing. The term
leasing is used because the amount of time for which the service is available
to the lessee is known in advance, at the time of the lease. This is a distinct
requirement of JINI. Although the amount of time for which the service is being
used by the lessee has to be known at the time of the lease, this time can be
dictated by the leaser (the device whose service is being used) or through a
negotiated process between the leaser and the lessee.

5. Joining: For a JINI device to offer its services to other devices, it first has to join
the JINI federation. This is done through a process called joining.

6. Transaction Management: Interactions between the various JINI devices may be
compound, being made of several simple atomic interactions. Because of this,
transaction management is needed to ensure the proper semantics are provided
to avoid partial results and bad data.

JINI specification merely provides us with a set of rules on how JINI devices must
behave. Most implementations that exist today are not designed for mobile de-
vices because they take up too many resources; however, there are some that offer
“mobilized JINI.” PSINaptic, for example, offers an implementation of JINI suit-
able for mobile devices in its JMatos. A clear advantage the JINI and other ad-hoc
networking technologies offer is that they allow mobile devices to roam through
a variety of networks. This promise, however, is difficult to fulfill primarily for
two reasons. First, the network operators of different networks roamed by a JINI
device may be operated by different entities, thereby having closed boundaries
to the JINI devices. Second, even if these network operators open up their net-
works for interoperability, a JINI implementation would have to live on the top
of a quilt of different low-level communication protocols implemented by each
network.†

As Eronen recognizes [Eronen 2000], the biggest downfall of JINI today is its
requirement of a virtual machine: “JINI’s Java dependency, while enabling most of
JINI’s best features, is at the same time the most limiting aspect of the technology.
A Java Virtual Machine that is required for each JINI service is not a light piece of
software.” Today, JINI and J2ME on the same device is not widely available. The
Java community is working on making JINI a more usable technology for mobile
devices with real implementations.

† As a side note, a group of JINI devices that are aware of one another are often called a JINI Federation.
The word “Federation” is frequently used in cooperative and ad-hoc networking environments to indicate
participation in a distributed computing system that requires some level of autonomous behavior on first
joining the federation, then allowing others to discover the device and the services on the device, and finally
interacting with the other members of the federation.

 EBSCOhost - printed on 4/16/2021 2:31 AM via INFORMATION AND LIBRARY NETWORK CENTRE. All use subject to https://www.ebsco.com/terms-of-use


